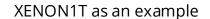
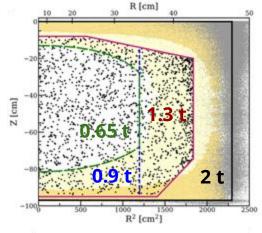
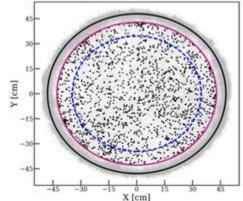

Dual Phase Xenon TPC

Kaixuan Ni University of California San Diego

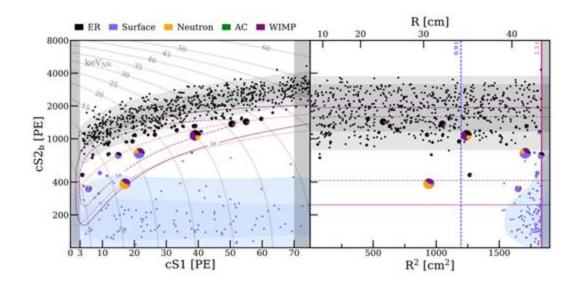
"single phase" and "dual phase" in DM searches

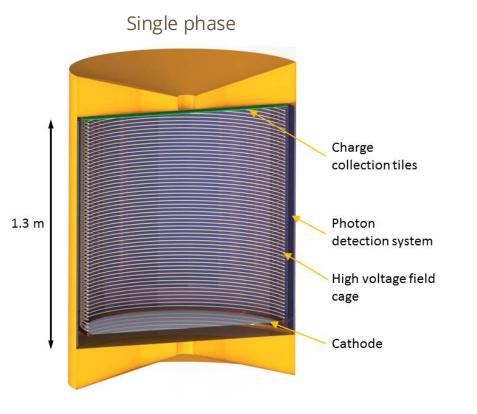


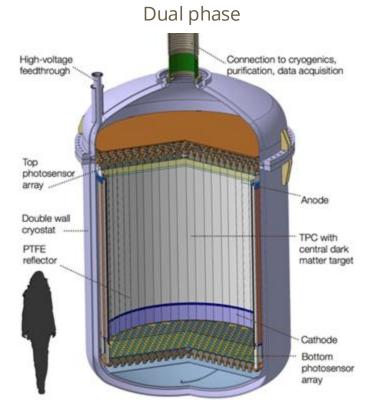

The evolution of dark matter detectors with LXe



Dual-phase XeTPCs offer superior performance because they achieve lower energy thresholds, provide robust ER/NR discrimination, and operate with overall lower background rates.

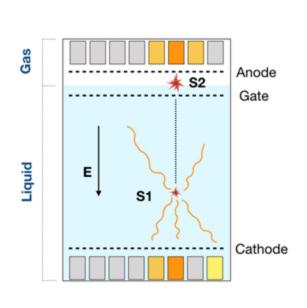

Using the S1 & S2 signals: positions and fiducialization

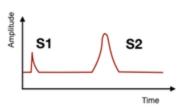


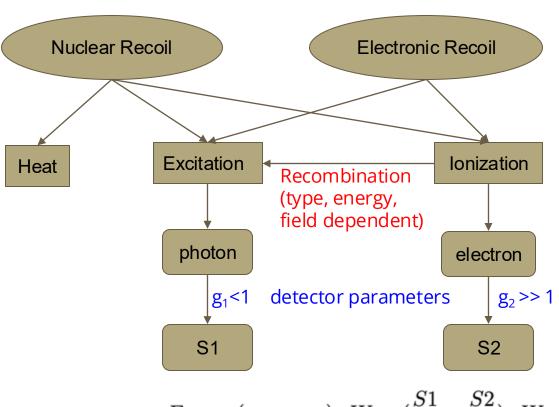

Combining ER/NR discrimination and fiducilization makes two-phase LXeTPC experiments very powerful in background rejection

XENON1T arXiv:1805.12562, PRL

"single phase" and "dual phase" in Ovbb searches

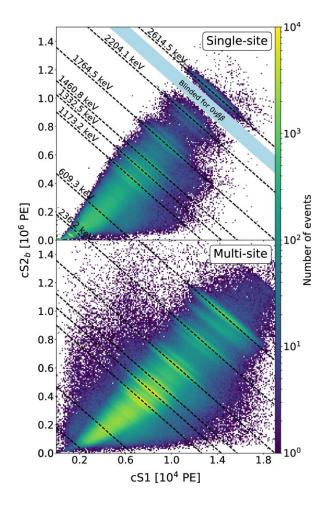


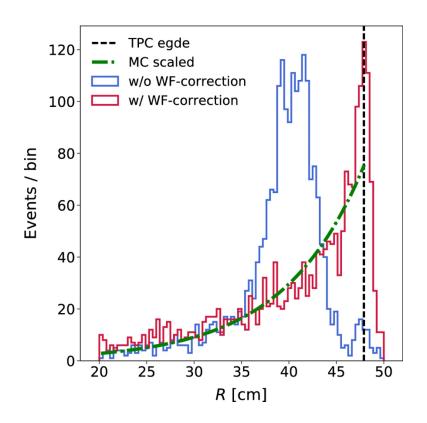



nEXO Concept

DARWIN/XZLD Concept

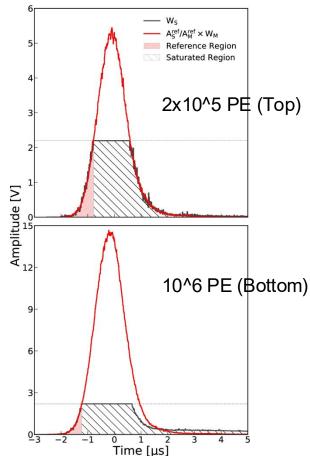
Use S1 & S2 for both DM and Ovbb searches



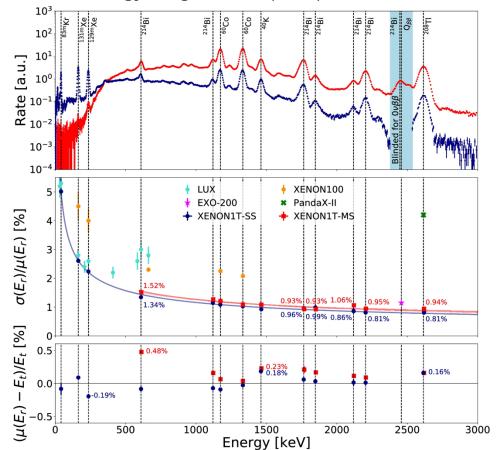


$$E_{obs} = (n_{ph} + n_e) \cdot W = (\frac{S1}{g_1} + \frac{S2}{g_2}) \cdot W$$

Position reconstruction and SS/MS identification with corrected S2

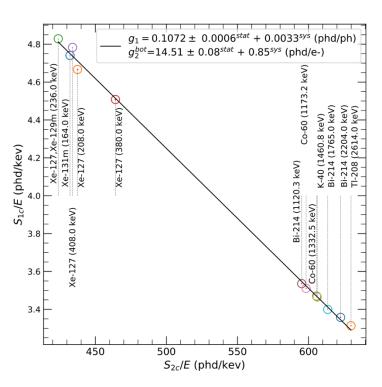


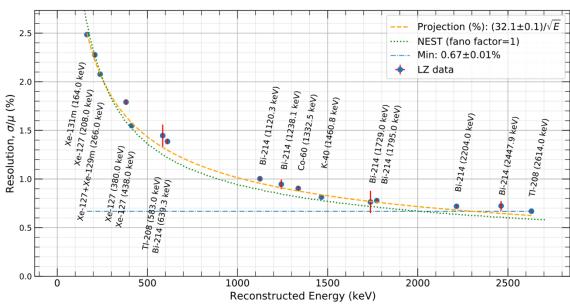
Energy resolution and linearity of XENON1T in the MeV energy range, EPJ C (2020)



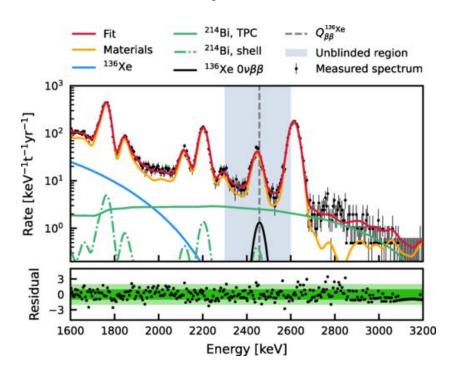
S2 pulses usually saturated for high energy events but can be corrected

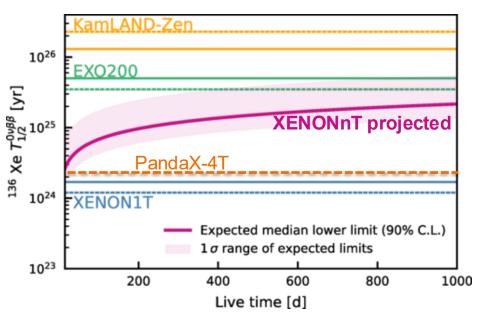
based on pulse shape template




Energy resolution and linearity of XENON1T in the MeV energy range, EPJ C (2020)

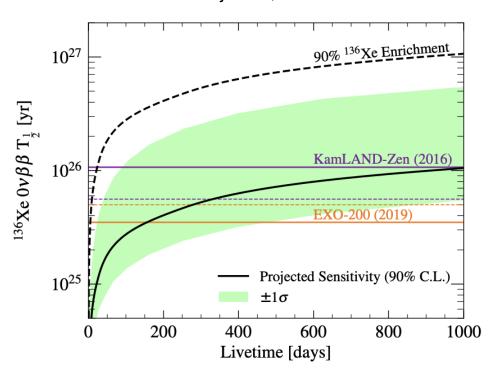
LZ achieved even higher energy resolution


Energy resolution of the LZ detector for high-energy electronic recoils, JINST (2023)



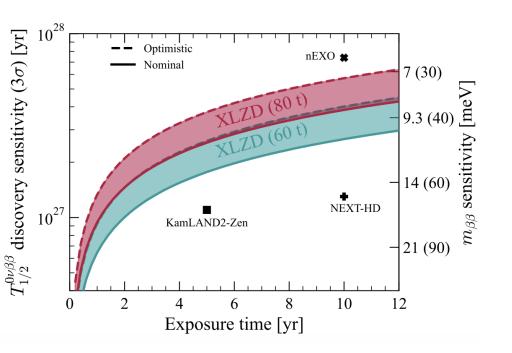
Ovbb search results and projections from dual-phase XeTPCs

Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments, PRC (2022)



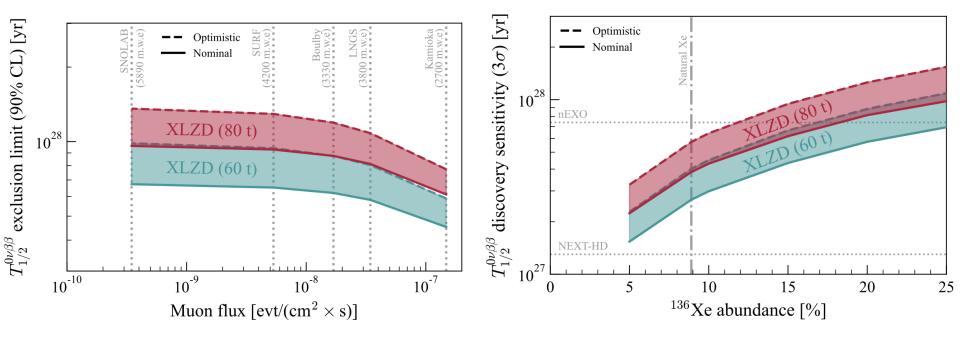
Ovbb search results and projections from dual-phase XeTPCs

TABLE I. Summary table of the masses, activities and estimated background counts in the \pm 1 σ ROI and inner 967 kg mass, for a 1000 day run, considering 1.0% energy resolution at Q-value and 0.3 cm multiple scatter rejection along z (see text for details).


		730	3	727		
Item	Mass	²³⁸ U-late	Counts	²³² Th-late	Counts	Total
	(kg)	(mBq/kg)	from ²³⁸ U	(mBq/kg)	from ²³² Th	Counts
TPC PMTs	91.9	3.22	2.95	1.61	0.10	3.05
TPC PMT bases	2.80	75.9	1.52	33.1	0.03	1.55
TPC PMT structures	166	1.60	2.65	1.06	0.12	2.77
TPC PMT cables	88.7	4.31	1.44	0.82	0.19	1.63
Skin PMTs and bases	8.59	46.0	0.75	14.9	0.02	0.78
PTFE walls	184	0.04	0.39	0.01	0.00	0.39
TPC sensors	5.02	5.82	1.19	1.88	0.00	1.19
Field grids and holders	89.1	2.63	0.62	1.46	0.11	0.73
Field-cage resistors	0.06	1350	2.63	2010	0.03	2.65
Field-cage rings	93.0	0.35^{\dagger}	0.82	0.24^{\dagger}	0.00	0.82
Ti cryostat vessel	2590	0.08^{\dagger}	1.30	0.22^{\dagger}	0.20	1.49
Cryostat insulation	13.8	11.1^{\dagger}	0.90	7.79^{\dagger}	0.04	0.94
Outer detector system	22900	4.71^\dagger	1.70	3.73^{\dagger}	1.08	2.79
Other components	438	1.83	2.10	1.65	0.31	2.41
Det. components subtotal	-	-	21.0	-	2.32	23.3
Cavern walls	-	29000.00	3.21	12500.00	8.41	11.6
Neutron-induced ¹³⁷ Xe	-	-	-	-	-	0.28^{*}
Internal ²²² Rn	-	-	-	-	-	0.45^{*}
$^{136}\mathrm{Xe}~2 u\beta\beta$	-	-	-	-	-	0.01^{\dagger}
⁸ B solar neutrinos	-	-	-	-	-	0.03
Total	-	-	24.2	-	10.7	35.6

LZ Projected, 1912.04248

Projected Ovbb sensitivity from future dual-phase XeTPCs


Neutrinoless double beta decay sensitivity of the XLZD rare event observatory, arXiv: 2410.19016

	Scenario		
Parameter	Nominal	Optimistic	
222 Rn concentration [μ Bq/kg]	0.1		
BiPo tagging efficiency [%]	99.95	99.99	
External γ -ray [% LZ]	25	10	
Installation site	LNGS	SURF	
Energy resolution [%]	0.65	0.60	
SS/MS vert. separation [mm]	3	2	

Projected Ovbb sensitivity from future dual-phase XeTPCs

Neutrinoless double beta decay sensitivity of the XLZD rare event observatory, arXiv: 2410.19016

What are the advantages of dual-phase XeTPC?

- High energy resolution (<1% at 0vbb energy)
 - High reflectivity PTFE enhances Light Collection Efficiency
 - High Quantum Efficiency PMTs improves Photon Detection Efficiency
 - "noise free" readout of ionization through Electroluminescence (S2)

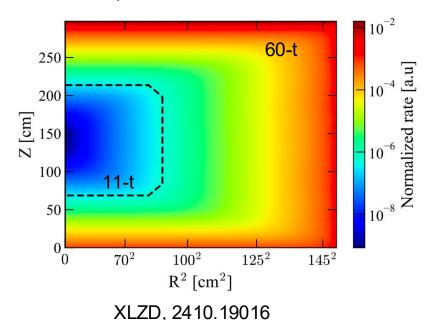
Low energy threshold

- ~keV with both S1 & S2
- sub-keV with S2-only

Low background

- LXe self-shielding and fiducial volume selection
- Electronic and nuclear recoils discrimination (good for WIMP DM)
- Single site/multi-site event discrimination

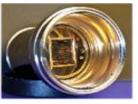
Cost effective


- Single (simpler) readout with PMTs for both scintillation and ionization (through S2)
- Typically, with natural xenon target
- Broad energy range for competitive multi-purpose science: DM, 0vbb, astrophysical neutrinos)

What are the challenges of dual-phase XeTPC for 0vbb searches?

- Radioactive (Bi-214) background
 - Material background for 0vbb is stricter than for the low energy region for DM
 - Need lower radioactive PMTs/components/vessels to further reduce this background

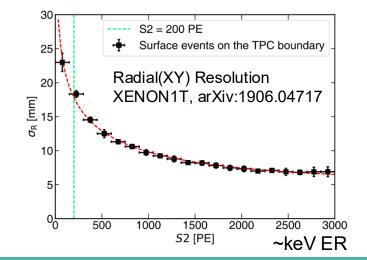
• Choice of low radioactive photosensors should not sacrifice light detection (QE, dark counts


etc.)

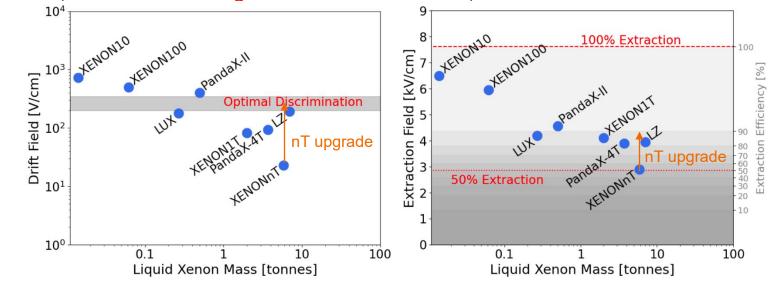
	²¹⁴ Bi events				
	I	z	XLZD		
	$(967 \mathrm{kg})$	× 1000 d)	$(8.2\mathrm{t}\times10\mathrm{yr})$		
Component	Nominal	Reduced	Projected		
TPC PMTs	2.95	0.98	0.61		
PMT structures	2.75	0.54	0.33		
Field-cage resistors	2.46	0	0		
Internal sensors	1.81	0.22	0.14		
PMT bases	1.52	0.39	0.24		
Cryostat	1.26	0.82	0.51		
PMT cables	1.01	0.16	0.10		
Field-cage rings	0.97	0.40	0.25		
OD tank supports	0.73	0	0		
OD foam	0.71	0	0		
Skin PMTs	0.69	0.06	0.04		
Other skin parts	0.68	0.05	0.03		
Other components	3.56	1.42	0.88		
Total	21.10	5.05	3.15		

What are the challenges of dual-phase XeTPC for 0vbb searches?

- XY resolution (to improve SS/MS discrimination -> Brian Lenardo's talk)
 - 2~3-mm in Z
 - XY resolution scales with **Top PMT size** and is ultimately limited by the anode/gate **wire pitches** (6 mm is reachable but 3 mm is challenging: need smaller PMTs and finer wire pitches)
- Optimize the size of top photosensors (and their radioactivity) can benefit both the XY resolution and background budget

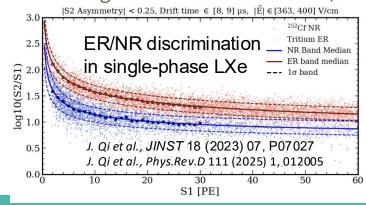


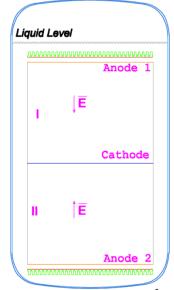
3-inch PMT, R11410-21


2-inch (4x1inch²) R12699

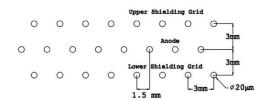
15mm VUV MPPC

What are the challenges of dual-phase XeTPC for 0vbb searches?

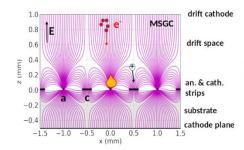

- Electrodes
 - Need high transparency for light collection
 - Require high voltage on the cathode that is close to the bottom PMTs (inactive LXe: 3~5% target in the reversed field region -> cost & lone S1s)
 - Require uniform and high extraction field at the top

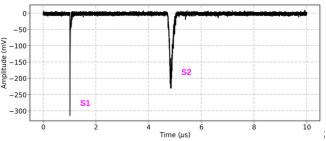


A. Kopec, Design challenges for a future liquid xenon observatory, arXiv:2310.00722


A hybrid design that unites the advantages of single- and dual-phase TPCs

- Single-phase LXeTPC that reads out electroluminescence in liquid xenon directly
- No gas gap: 100% electron "extraction"
- No inactive LXe region below cathode
- S2 is ~1/10 smaller (less saturation, less bkg)!
- Recent progress shows good ER/NR discrimination for low energy physics
- Thin wire is too delicate for large TPCs ->
 micro-pattern on fused silica offers more
 robust solution & better XY resolution (only
 one large area cathode is needed)




K. Giboni et al., arXiv:2107.07798

<u>G. Martinez-Lema</u> et al. *JINST* 19 (2024) 02, P02037, see also: 2505.24611

Summary

- •Dual-phase XeTPCs deliver ultra low-energy sensitivity, strong ER/NR discrimination, and excellent energy resolution at MeV-scale, enabling competitive searches for both dark matter and $0v\beta\beta$.
- •**Key challenges for 0vββ optimization** include achieving ultra-low radioactivity, improving XY/SS-MS discrimination, and developing transparent electrodes with optimized high voltage performance.
- •Combine the strengths of both single/dual-phase designs—using liquid electroluminescence and micro-pattern structures—offer a promising (backup) solution.