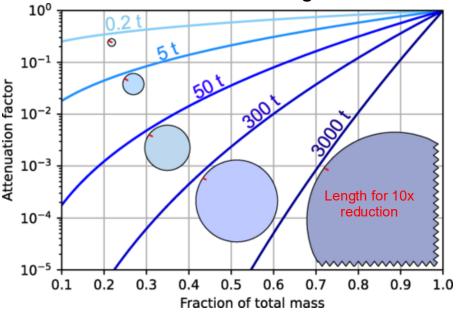
Liquid TPCs (single phase)

David Moore, Yale University (my personal opinions only)

0νββ in Xe workshop, McGill November 14, 2025


Single phase liquid TPCs (overview)

Single phase liquid Xe TPCs (key features/challenges):

- 1. Like other liquid/solid phase Xe detectors, high density $(\rho \approx 3 \text{ g/cm}^3)$:
 - Minimizes detector size at given target mass
 - Significantly larger self-shielding of external backgrounds than high-pressure gas TPCs
 - Favors homogeneous volume, without central cathode (ensure Rn daughters are external bkgs)
 - In large detectors, allows tagging/veto of ¹³⁷Xe production through tagging of ~4 MeV gamma cascade
 - Large detectors demonstrated in both LXe dark matter and LAr neutrino communities

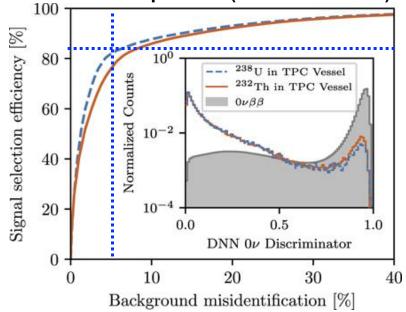
Mass:	Approx. linear dimension:
100 kg	~30 cm
5 t	~1 m
1000 t	~7 m

Attenuation of external backgrounds vs size:

Avasthi et al., Phys. Rev. D 104, 112007 (2021), arXiv:2110.01537

Single phase liquid TPCs (overview)

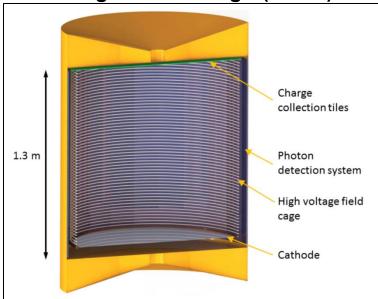
Single phase liquid Xe TPCs (key features/challenges):


- 2. Direct readout of charge without amplification:
 - High LXe density gives \sim 3-4 mm $\beta\beta$ tracks:
 - σ_z ~1-2 mm, $\sigma_{x,y}$ ~3-4 mm scale spatial resolution to separate $\beta\beta$ from ~95% of Compton scatters
 - No possibility for single β vs $\beta\beta$ separation (as in HP gas)
 - Direct readout on pad electrodes/wires demonstrated at this resolution
 - No amplification of charge signal :
 - Low noise electronics ($\sigma \sim 200~e$ for ~5 mm scale pad) are needed to reach <1% energy resolution
 - Required noise (nearly) achieved for cold electronics in LAr ASICs and LXe prototypes
 - No need to control liquid level, extraction field, no loss of electrons due to incomplete extraction efficiency
 - Poorer resolution demonstrated to date than dual phase (σ_E /E~1.2% EXO-200 vs ~0.6-0.8% for LZ/XENON1T at 2.6 MeV)
 - Much worse energy threshold than dual phase (few 100 keV)

nEXO prototype charge readout tile:

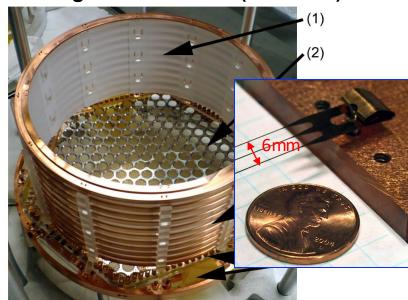
M. Jewell et al., JINST 13 P01006 (2018), arXiv:1710.05109

SS/MS separation (nEXO simulation):

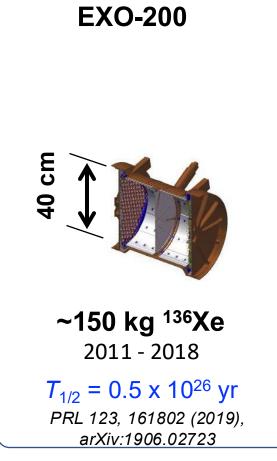

J. Phys. G: Nucl. Part. Phys. 49 015104 (2022), arXiv:2106.16243

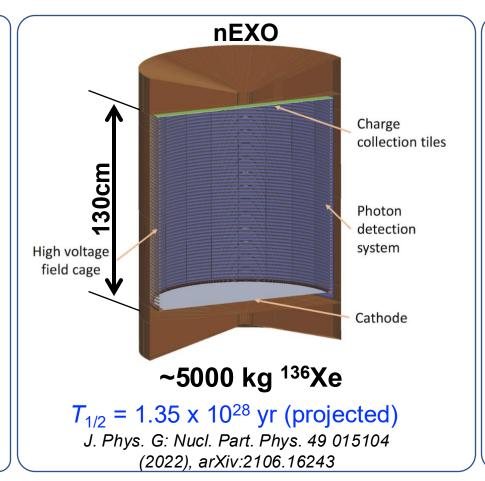
Single phase liquid TPCs

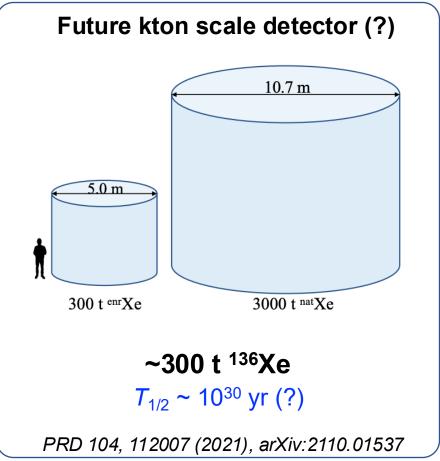
Single phase liquid Xe TPCs (key features/challenges):


- 3. Engineering considerations (not comprehensive):
 - Compared to dual phase TPCs can avoid wire planes entirely if desired (e.g. nEXO design)
 - For direct charge readout, lack of shielding grid leads to complex signal shapes (induction)
 - Conventional design with wire planes/reflectors also possible (e.g. EXO-200)
 - High voltage only needs to be delivered to the cathode
 - Detector sensitivity is optimized for 200-400 V/cm (assuming ~5-10% light collection)
 - Energy resolution/topological discrimination improves with field
 - Requirements on electron lifetime/purity minimized (>5 ms)
 - Lose ~10-20% expected sensitivity at 100 V/cm, more rapidly below that
 - Extremely large single-phase LAr TPCs are being designed
 - Single phase detectors can possibly benefit with this engineering (e.g. cold electronics)

Wire grid free design (nEXO):

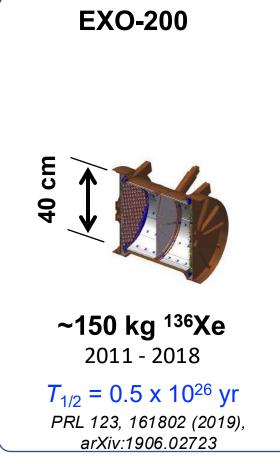

nEXO pre-Conceptual Design report, arXiv:1805.11142

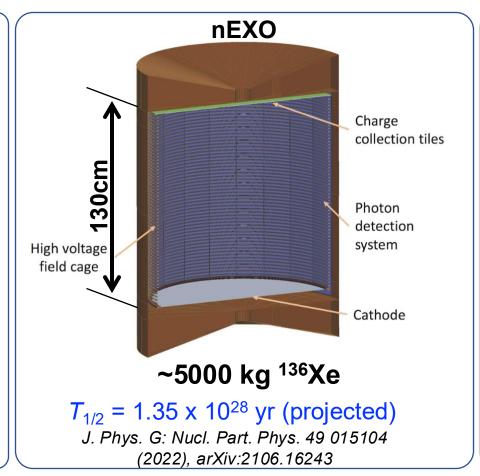

Wire grids + reflector (EXO-200):

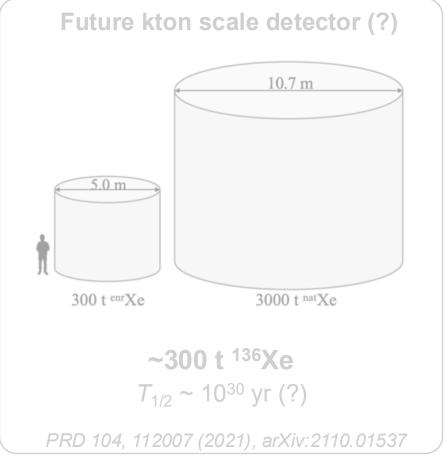


LXe single phase TPCs (history/status)

- Initial ~150 kg detector (EXO-200) ran from 2011-2018, reaching 0.5 x 10²⁶ yr sensitivity
- Conceptual design for 5000 kg detector (nEXO) developed to a high level of maturity by nEXO collaboration (just prior to DOE CD-1), with sensitivity estimated to be 1.35 x 10²⁸ yr

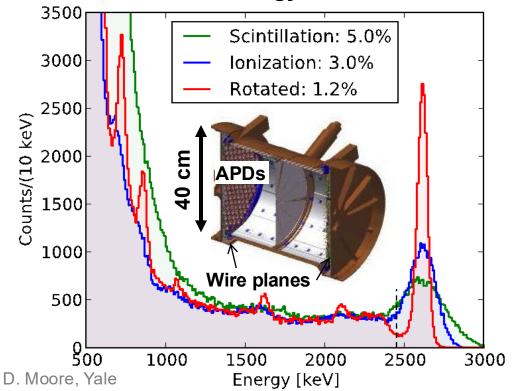


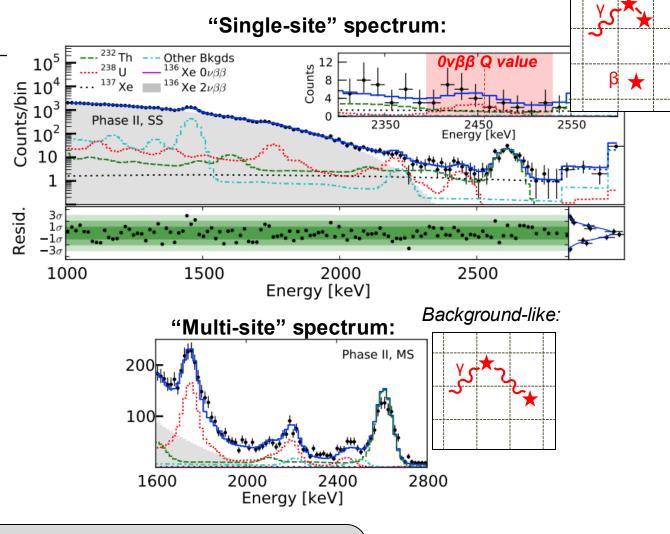




LXe single phase TPCs (history/status)

- Initial ~150 kg detector (EXO-200) ran from 2011-2018, reaching 0.5 x 10²⁶ yr sensitivity
- Conceptual design for 5000 kg detector (nEXO) developed to a high level of maturity by nEXO collaboration (just prior to DOE CD-1), with sensitivity estimated to be 1.35 x 10²⁸ yr





EXO-200

- Single phase LXe TPC (~150 kg, enriched to 80% ¹³⁶Xe), ran from 2011-2018
 - First discovery of $2\nu\beta\beta$ in ¹³⁶Xe
 - Final limits on $0\nu\beta\beta > 3.5 \times 10^{25} \text{ yr}$
 - Demonstrated key aspects of LXe single-phase technology (bkg. prediction from material assays, $\sigma_E/E = 1.2\%$, topological discrimination, ...)

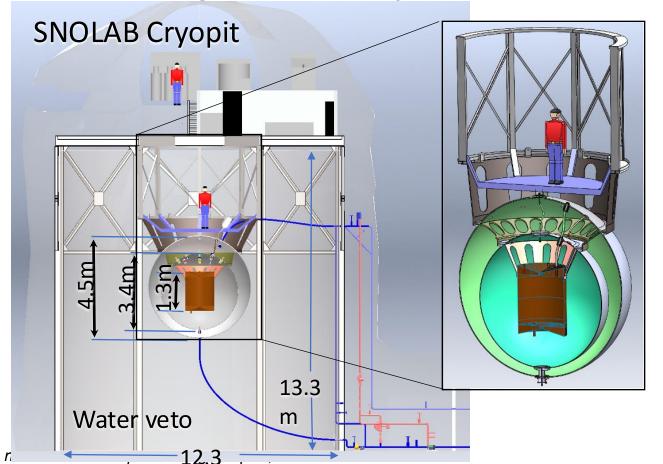
Reconstructed energy, ²²⁸Th calibration:

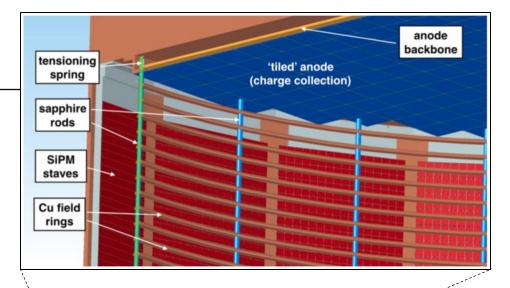
Results from complete exposure (234 kg yr):

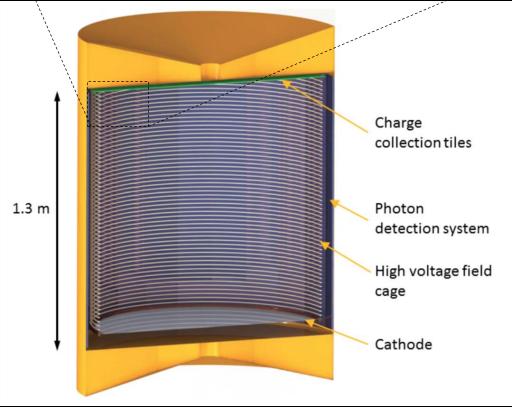
 $T_{1/2}^{0\nu\beta\beta} > 3.5 \cdot 10^{25} \text{ yr}$ (Phase 1+2) median sensitivity = 5.0 · 10²⁵ yr

 $\langle m_{\beta\beta} \rangle < 93 - 286 \text{ meV}$

PRL 123, 161802 (2019), arXiv:1906.02723 PRL 120, 072701 (2018), arXiv:1707.08707 Nature 510, 229 (2014), arXiv:1402.6956

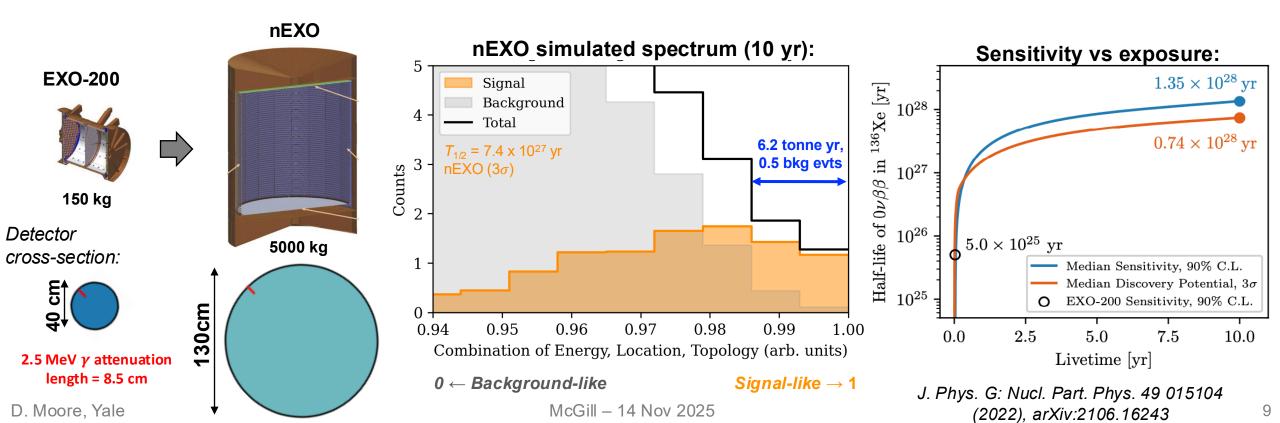

McGill - 14 Nov 2025


Signal-like:


nEXO concept @ SNOLAB

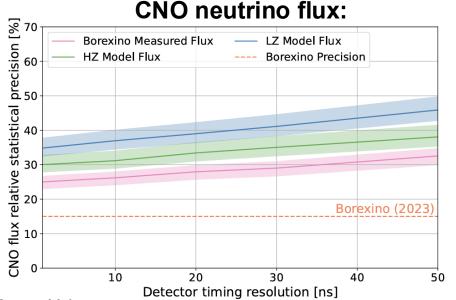
- nEXO provides a multi-ton scale extension of the single-phase LXe TPC technology demonstrated in EXO-200
 - Detailed conceptual engineering design at SNOLAB

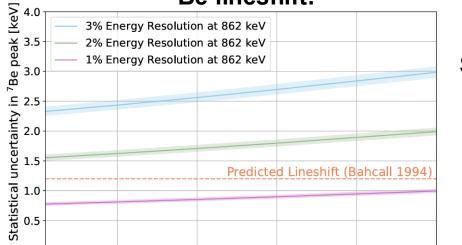
Conceptual design in SNOLAB Cryopit:



D. Moore, Yale McGill – 14 Nov 2025

Tonne scale single-phase detector


- By scaling liquid TPC to ~1.3 m linear dimensions, central region reaches extremely low background levels
 - Combining energy, standoff, topology -> effective 6.2 tonne yr exposure with estimated background of 0.5 events in most sensitive region
 - Sensitivity estimates based on bottom-up materials budget and radioassays of candidate components, reaches $T_{1/2}$ sensitivity >10²⁸ yr
- nEXO conceptual design reviewed at high level of detail (just before CD-1) through DOE process in US



Other physics with single phase detector

- Single phase detector can reach sub-% resolution at 2.5 MeV, but can't reach thresholds needed to simultaneously do low energy physics (in particular WIMP dark matter)
- However, the same 136 Xe needed for world-class $0\nu\beta\beta$ decay experiments (gas, single, or dual phase) is likely to enable these detectors to do significant solar ν physics
 - Charged-current ν interactions can be tagged through deexcitation of long-lived (~100 ns) states of ¹³⁶Cs, possibly with extremely low backgrounds

Recent sensitivity evaluation for 5 tonne nEXO-like detector:

Detector timing resolution [ns]

30

40

50

20

⁷Be lineshift:

Observation of Low-Lying Isomeric States in ¹³⁶Cs: A New Avenue for Dark Matter and Solar Neutrino Detection in Xenon Detectors

S. J. Haselschwardt⁰, ^{1,*} B. G. Lenardo, ^{2,†} T. Daniels, ³ S. W. Finch⁰, ⁴ F. Q. L. Friesen⁰, ⁴ C. R. Howell⁰, ⁴ C. R. Malone, ^{4,‡} E. Mancil⁰, ⁴ and W. Tornow⁰

See more details at:

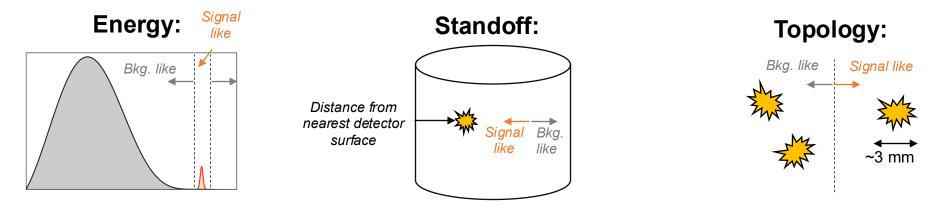
G. Richardson et al. (nEXO), PRD 112, 103010 (2025), arXiv:2506.22586

McGill – 14 Nov 2025

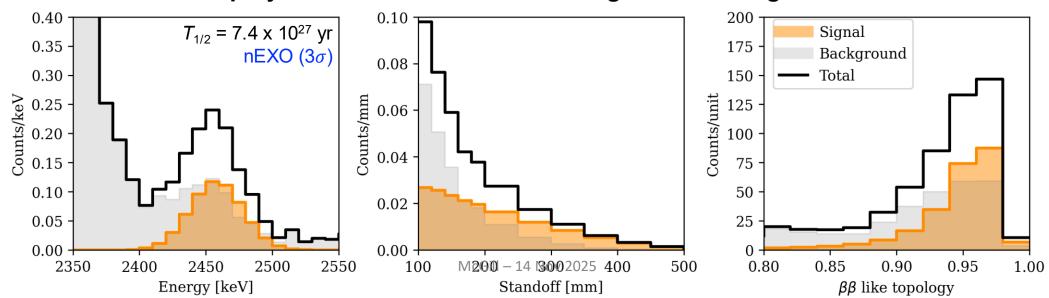
10

0.0

Challenges/opportunities (my personal take):


- Significant investment in developing a fairly advanced conceptual design for a 5 tonne single-phase Xe TPC from DOE NP through the nEXO project
 - The technical aspects, cost, schedule, etc were reviewed at a high level of detail over many years, reaching readiness for CD-1 review (many aspects of the project at higher level of maturity)
 - Sensitivity estimates are mature and based on material assay/estimation procedure validated in ~150 kg scale single-phase detector
 - Challenges around funding in the US, transfer of knowledge from previous project team
 - Opportunity for this relatively mature concept to impact an international project sited at SNOLAB
- General technical challenges for single phase technology:
 - Background control and assays:
 - Even with significant attenuation of external backgrounds, extremely low background materials required to reach >10²⁸ year sensitivity
 - Control of radon/tagging of radon daughters on detector surfaces (Bi-Po, where Po is missed)
 - Low noise electronics for charge readout without amplification (custom cryogenic ASICs)
 - Opportunity to leverage parallel development for single phase LAr detectors
 - High voltage to maintain sufficiently high field needed to reach sub-percent resolution and topological rejection

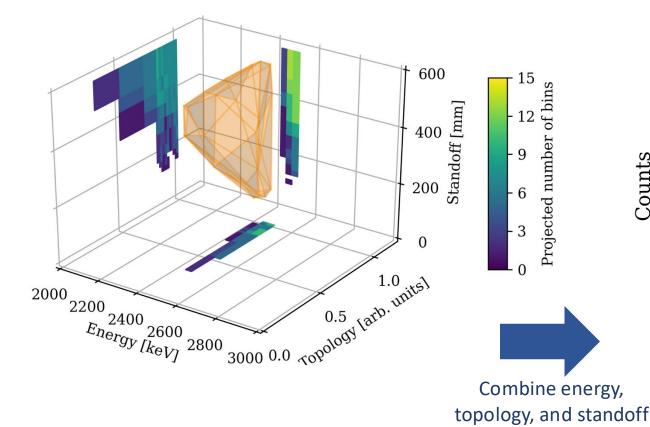
Challenges/opportunities (my personal take):


- While the technical challenges/opportunities are interesting, my personal take is that the real opportunity here is not technical
 - In my opinion, it is much more important for this community to coalesce around a single technology for the next steps
 - "Facts on the ground" are likely more important for going forward than technical comparisons of technologies, given all technologies have significant reach in principle
 - Xenon detectors have a huge opportunity to go not only to 10²⁸ year sensitivity in the coming ~decade, but a plausible path to 10²⁹ yrs and potentially beyond
 - This is a huge science opportunity I think we can't miss as a community by not coming together around a project to make this happen

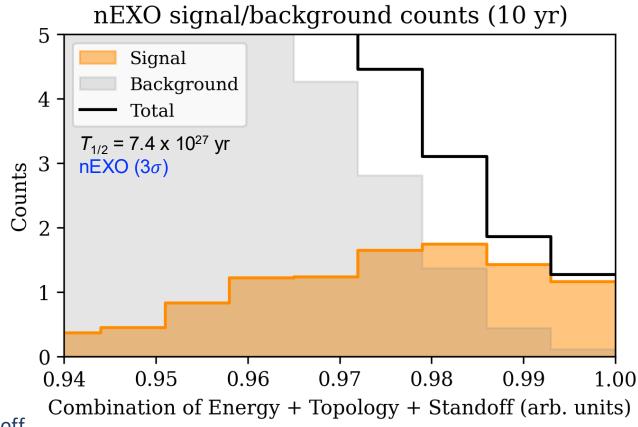
nEXO Signal and Background

- nEXO measures multiple parameters for each event to be able to robustly identify a 0νββ signal
- As a fully homogeneous detector, it precisely measures backgrounds in situ
 - No internal materials (other than Xe), making nEXO uniquely robust against unknown backgrounds

1D projections of simulated nEXO signal and backgrounds:



nEXO Signal and Background


- Likelihood fit allows optimal weighting between signal and background combining energy, topology, and standoff over full 3D parameter space
 - A simpler 1D combination can help visualize the signal and background separation in nEXO

(preserving correlations)

3D ultra-low background region of interest:

Optimal 1D combination of all parameters:

