

Purification & Storage

Neutrinoless double beta decay search in Xe - nextgeneration experiment workshop

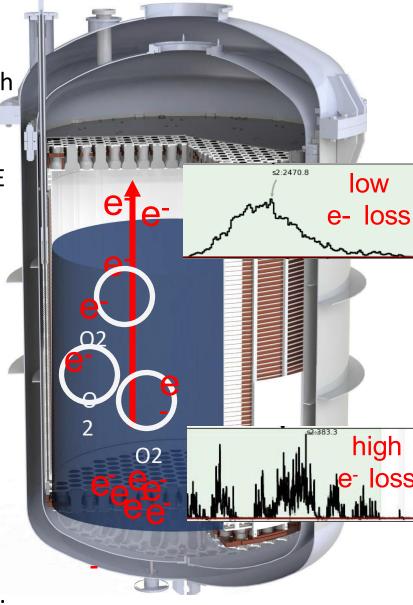
Ovbb Goal is 10²⁸ Years 2 options considered here:

- 90% 136-xenon enriched
- nEXO-like experiment
 - 5t
 - 1,3 m ø x 1,3m h
- SNOLAB
 - Active mine
 - Access constrained (vertical shaft)
 - Lab is a clean room
 - 3,000m²

- Natural xenon (8,9% in 136)
- XLZD-like experiment
 - 100 t
 - 3,5 m Ø x 3,5 m h
- LNGS
 - Easy access (trucks can drive in)
 - Dedicated to underground science
 - 18,000m²

Electronegativity impurity in LXe

- H₂O: resides on metal surfaces
 - Light attenuation at scintillation wavelength
 - Uniform reduction of S1 signal
- O₂: resides within porous material such as PTFE
 - High electron attenuation; capturing drift electrons
 - Depth dependent loss of S2 signal
 - Quantified by electron drift lifetime:


$$\tau_e = \frac{1}{k_{O_2} C_{O_2}}$$

 $C_{\mathcal{O}_2}$: O_2 concentration, $k_{\mathcal{O}_2}$: rate constant

- Number of S2 electrons $N_{\rm e}$ lost at drift time t:

$$N_e(t) = N_e(0). e^{-\frac{t}{\tau_e}}$$

Impact on Energy resolution, S2-only analysis,...

XENON1T/nT Gas Purification

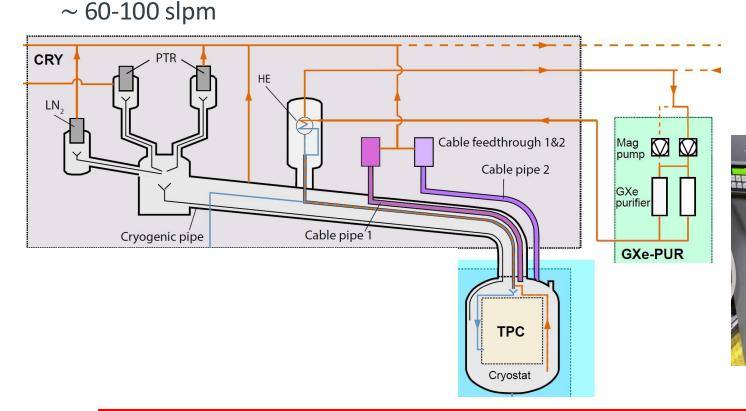
Hot getter purifiers (zirconium)

$$x_{\infty} = \frac{\Lambda \tau_p}{n\varepsilon}$$

General purification performance equation:

Magnetic GXe pumps (mag-pumps): 22-36 kg/h

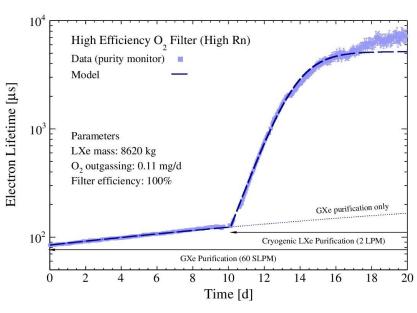
 x_{∞} : impurity at equilibrium Λ : total impurity source inflow


 τ_p : flow turnaround time from TPC

 ε : purifier efficiency

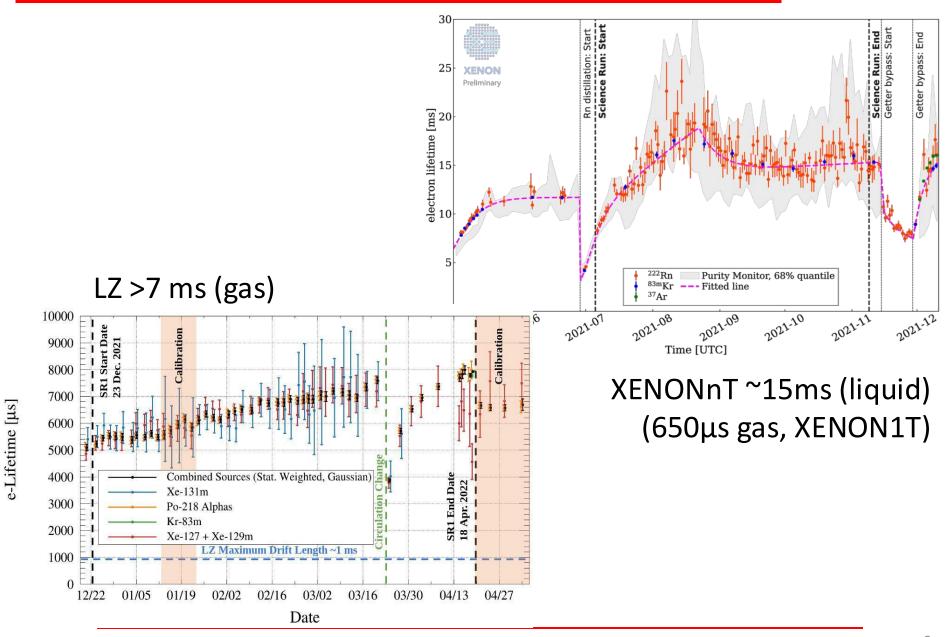
n: total LXe

t Getter



XENONnT Liquid Purification

- Magnetically coupled cryogenic rotor pumps: $180-720 \text{ kg/h} \sim 1-4 \text{ LPM}$
- Purifiers:
 - copper catalyst on high-surface-area alumina (Q5): high ε , higher radon emanation
 - -pellets of non-evaporable getter alloy (St707):

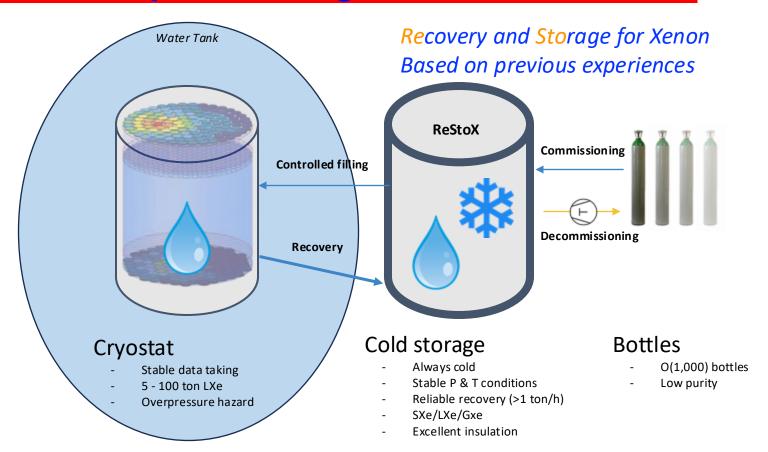

lower *E*, low radon emanation

- → Need extra xenon
- → Possible 137Xe activation

Purification

Storage approaches

- Usually expressed as the last thing to think about
- "Easy since we have efficient bottles"
- nat-Xenon or enr-Xenon is similar
- No Loss


- Standard bottles are not meant to cryopump LXe with LN2
- 5 t of LXe = 100 x (50 kg bottles) !
 - 100 connections!
 - o 13 m² with 8 bottles / m²

- 100 t = 2 000 bottles!
 - 2 000 connections!
 - o 250 m² with 8 bottles / m²

Transfer from / to storage

Key functionalities	Operating Modes
A) Initial storage	 Empty / Warm / Under Vacuum Ready to receive Xe from bottles before or after pre-purification During the construction of the detector, safely store and manage Xe. Continuous purification through getters
B) Filling the detector	5) Distribution & Pre-cooling the TPC6) Filling Xe into the detector
C) Level adjustment & Distribution	7) Easy transfer to the experiment8) Distribution for other subsystem too
D) Recovery	9) Standby: always cold (LN2 T°) for recovery (cryo-pumping) 10) Recovery from detector (voluntary or emergency-triggered)

A new concept of storage : ReStoX

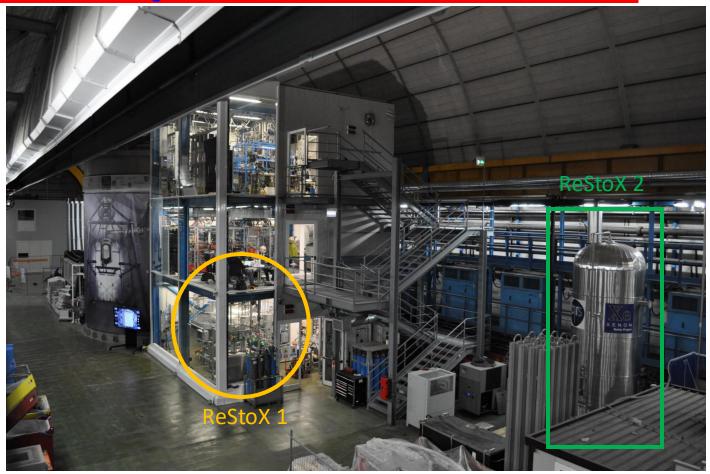
- Storage in GXe / LXe / SXe
- High level of purity
- Storage in case of cooling power loss
- Available all time for the experiment (& sub-systems)
 - Construction / Commissioning / Data taking / Maintenance / Decommissioning
 - Cleanliness / Security / Storage & Recovery

ReStoX - Previous experiences

Knowledge of handling large LXe quantity (10t) Since 2014

ReStoX are LXe recovering, storage and distribution stations, High Pressure, Safebox

- Columbia University New York (USA)
- Mainz University (Germany)
- Subatech (France)
- ReStoX2 in XENONnT 10 t LXe
 - LAL (France)
 - LPNHE (France)
 - Subatech (France)
- (nEXO 5 t LXe-136)
 - Subatech (France)
- (XLZD 100 t LXe-136)
 - Subatech (France)
- ReStoX in XEMIS 200 kg LXe
 - Air Liquide (France)
 - Subatech (France)



XEMIS

nEX

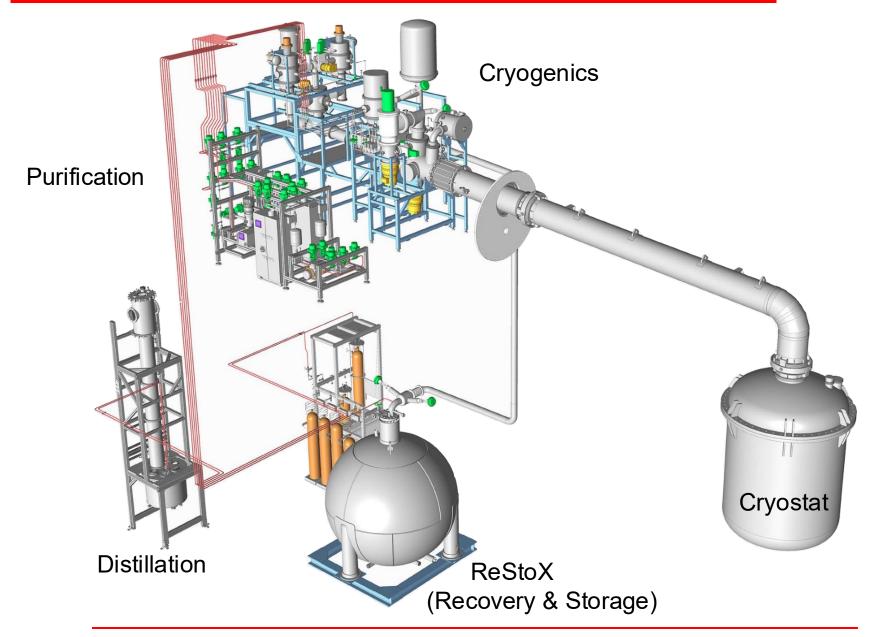
XENONnT facility

ReStoX1: Emergency recovery up to

7.6 tons of LXe

Passive: No active cooling required

to keep Xe contained


ReStoX2: Very fast recovery > 1t/h

up to 10t.

Passive: No active cooling required

to keep Xe contained

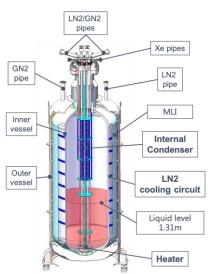
XENON1T Plant

ReStoX 1 & 2 - comparison

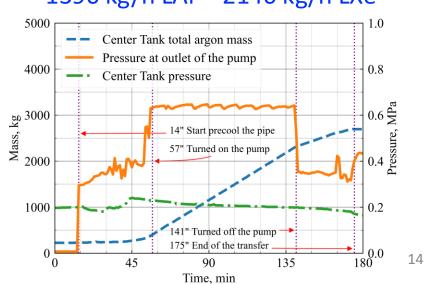
Table 3.4: Comparison between ReStoX and ReStoX2.

Description	ReStoX	ReStoX2
Dimension	$2.1\mathrm{m}\oslash\mathrm{sphere}$	(1.45 m, 5.5 m) cylinder
Phase	GXe, LXe, SXe	GXe, LXe , SXe
Maximum pressure	73 bar	71.5 bar
Capacity	7.6 t	10 t
Recovery speed	$\sim 50\mathrm{kg/h}$	$\sim 1000\mathrm{kg/h}$
LN_2 consumption in operation	35 kg/d	0 kg/d
LN_2 consumption for recovery	$25~\mathrm{kg/h}$	$\sim 8000\mathrm{kg}$

FIRST-X in PandaX

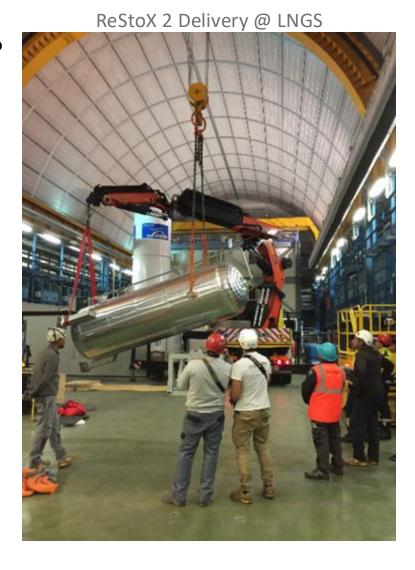

Filling, Recovery, and Storage of Xenon

JINST 18 P05028 - arXiv:2301.06044

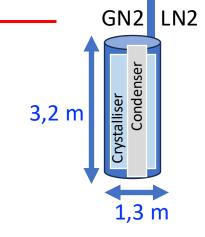


5x (6 t)

1390 kg/h LAr = 2140 kg/h LXe

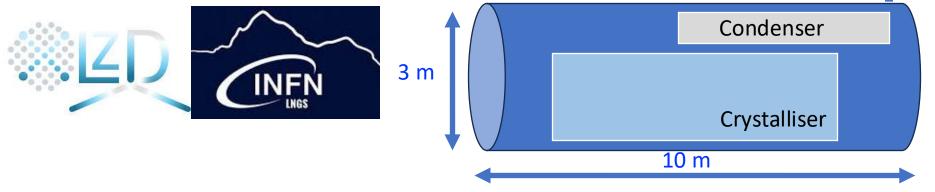

Comparison between ReStoX & cylinders

Feature	ReStoX	Bottles
Connections	Few	Many
Cleaning	Limited	Extensive
Xe weight measurment	Easy & All time	Problematic
Monitoring P & T	All time	partially
Control P & T	Condenser & heater	partially
Footprint underground	Limited	~ 6,000 bottles
LN2 consumption for recuperation	Very efficient = already cold with excellent insulation	High loss
N2 boil off	Dedicated tube	In the cavern
0 ₂ alams	None	Many (maybe)
Purification during storage	Easy	Feasible
Power failure	Pneumatic logic & Slow control	Pneumatic logic possible
Welding failure	Dramatic	Problematic


What about 5 - 100 t?

Where: LNGS-like or SNOLAB-like laboratory?

- Trucks can access to LNGS
- Elevator is the only access to SNOLAB size ~ 3.2m x 1.3m
- Design has to optimize a variety of factors :
 - Size
 - Cleanliness
 - o Ease of use
 - o Price
 - o ...


Option 1

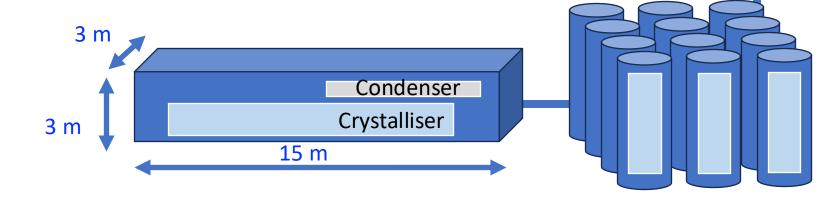
ReStoX Drawn for 5t (nEXO-like)

- Transportable through the shaft to go underground → 2,5 t
- Electropolished with highest standard
- Pressure tested before delivery

Connect 2 Vessels 2x (2,5t ReStoX)

Underground footprint < 5 m²

Option 2

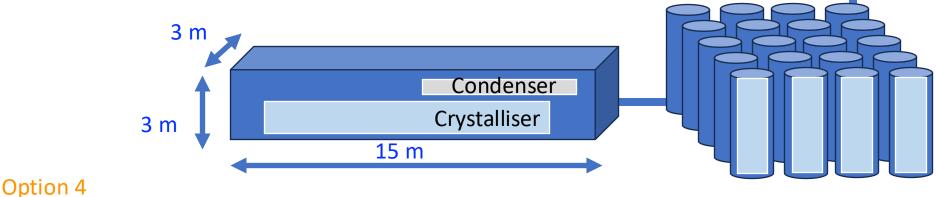

ReStoX Drawn for 50t (DARWIN-like)

- Transportable on a truck to go underground
- Electropolished with highest standard
- Pressure tested before delivery

Can imagine 2x (50t ReStoX) for XLZD

Underground footprint < 100 m²

Option 3

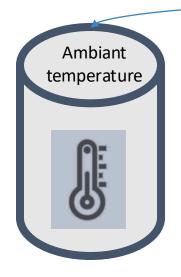

1 ReStoX for standard operation – low pressure (10 bars)

(4m x 4m x 20m already used for LAr)

Can be transported or built underground High purity standard garantied

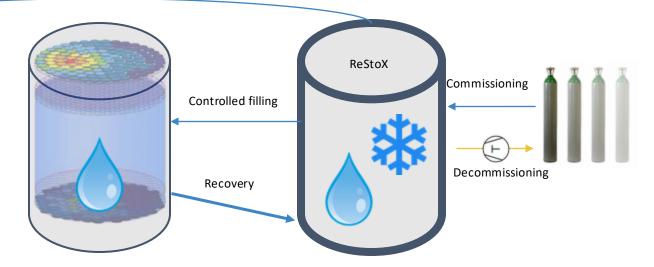
+ 10 x 10t ReStoX2 for emergency & long term storage

Underground footprint ~ 100 m²


1 ReStoX for standard operation – low pressure (10 bars)

Can be transported or built underground High purity standard garantied

+ 40 x 2,5t ReStoX for emergency & long term storage


Underground footprint ~ 100 m²

Summary

Extra storage

Extra volume

Cryostat

- Stable data taking
- 5 100 tons LXe
- Overpressure hazard

Cold storage

- Always cold
- Stable P & T conditions
- Reliable recovery (>>1 ton/h)
- SXe/LXe/Gxe
- Excellent insulation

Bottles

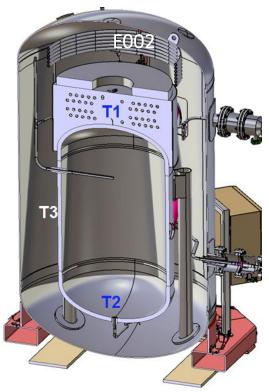
- O(1000) bottles
- Low purity

- Cryopumping transfer
- Safe-box for the (enr)-Xe in any conditions.
- Key Component of the Xe handling system
- Dynamic / active / flexible part of the system.
- LN2 cooling with permanent access.

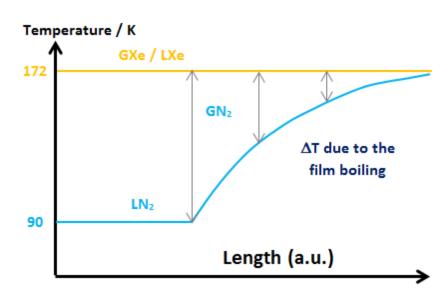
- Mature design already tested on installations.
- In use in the XENON1T/nT since 2014 no loss nor major issue to be reported.
- Answer to all storage and distribution issues.
- Gravitational recovery possible

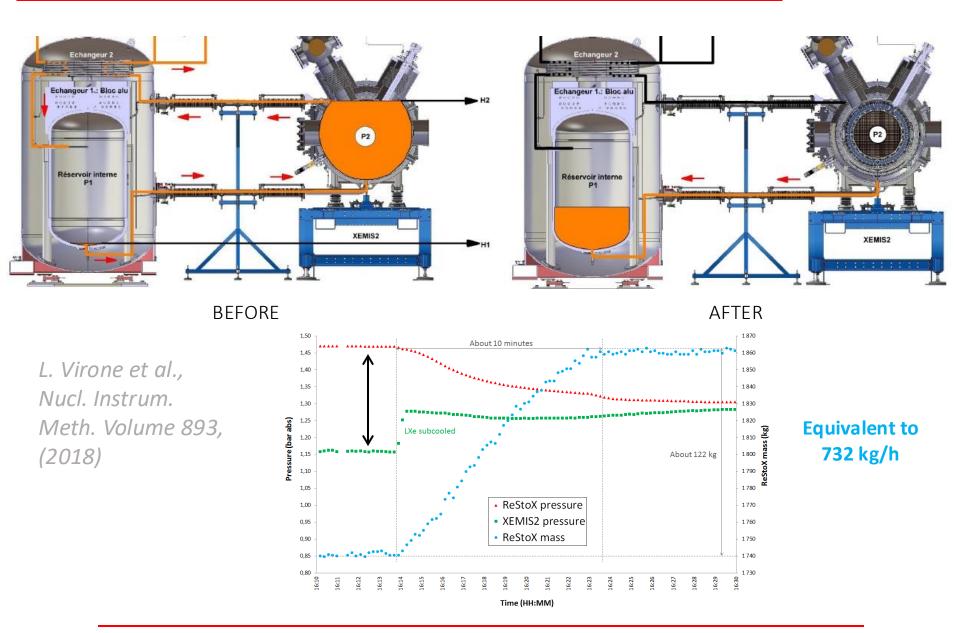
Features of bottle's storage

Feature	Bottles		
Connections	Many		
Cleaning	Extensive		
Xe weight measurment	Problematic		
Monitoring P & T	partially		
Control P & T	partially		
Footprint underground	~ 1,000 bottles		
LN2 consumption for recuperation	High loss		
N2 boil off	In the cavern		
0 ₂ alams	Many (maybe)		
Purification during storage	Feasible		
Power failure	Pneumatic logic possible		
Welding failure	Problematic		


XEMIS project

- ☐ XEnon Medical Imaging System (XEMIS)
 - ☐ Hospital facility for low activity small animal imaging
- □Compact set with 3 components
 - ☐ Closed loop with 200 kg of Xenon


ReStoX for XEMIS



- ☐ Double walled vacuum & perlite insulated shell
- □ Internal capacity of 280 L for storing 200 kg of Xe up to 71 bar a in any condition
- ☐ Two exchangers (E001 and E002)
 - \square E001 (LN₂/Xe): from 0,1 kW to 11 kW
 - E002 (Xe/Xe): interface hot and cold parts, up to 250 W

Gravitational recovery

