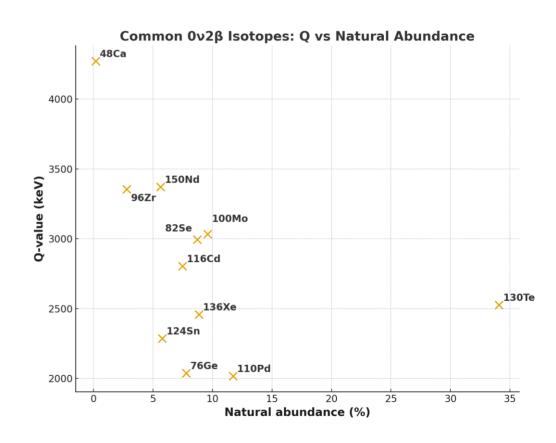
Review of Xenon Detector Technologies

M. Heffner LLNL

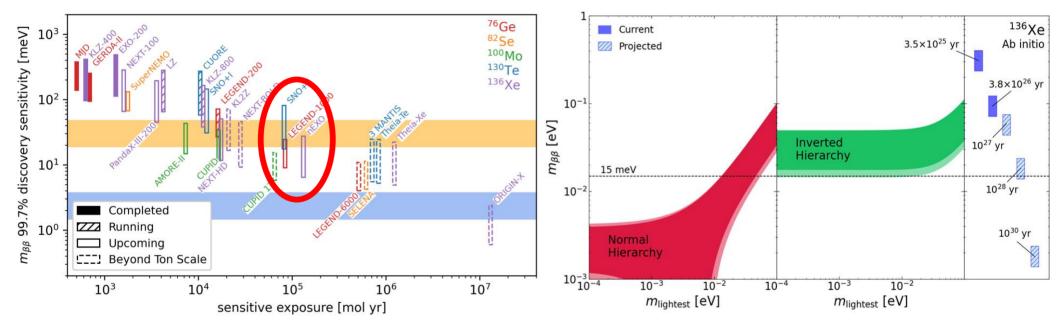
Xenon Workshop 12-14th Nov 2025 McGill


Why Xenon?

Xenon:

- High Density
- Good Self-shielding
- Excellent scintillation and ionization properties
- Non toxic
- Commercially produced
- Good electron drift properties (easy to clean)
- Competitive Q and abundance
- Large noble gas TPCs already demonstrated at scale
- Scaleable to 10³⁰ yr sensitivity
- The only gas or liquid of the 11 $0v2\beta$ isotopes with Q>2MeV
- ...

Issues for Xenon:


- Cost of the xenon
- Close ²¹⁴Bi line (~10keV away)

Why Xenon? (Plausible scaling to 10³⁰)

Detector technology			Isotope acquisition	External backgrounds	Internal backgrounds	Energy resolution (2v ββ)	Isotope mass fraction (solar v)	Detector technology maturity (kton scale)
Segmented detectors								
	HPGe		?	×	?	1	√I?	×
	Bolometers		√I?	×	?	/	√I?	×
	Tracking/CCDs	Se based	/	?I×	?	1	1	×
Monolithic detectors								
	Liquid scintillator	Te doped	/	1	?	×	×	/
		Xe do ped	×	1	1	×	×	/
	TPCs	Gas Xe	×	✓	/	1	✓	√I?
		Liquid Xe	×	1	1	1	√I?	/
		Xe doped Ar	×	1	×I?	×I?	×	/
		SeF ₆ (ion drift)	1	1	?	?	√I <u>?</u>	×

Why Target >10²⁸ Year Sensitivity? ...and Build the Experiment ASAP

- LEGEND-1000 and Cupid have projects now for the equivalent of ~10²⁸ yr
 - Sets the minimum standard for new projects to be relevant.
- KamLAND-Zen is making progress toward 10²⁷ yr.
- · Activity in China also adds time pressure.

What is required to get 10²⁸ yr?

Radioactive Decay

$$\frac{dN}{dt} = \frac{ln(2)}{T_{1/2}}N$$

Half life(yr)	Events/tonne/yr*
10^{26}	30
10 ²⁷	3
10 ²⁸	0.3
10 ²⁹	0.03
10 ³⁰	0.003

*for xenon

What is required to get 10²⁸ yr?

Radioactive Decay

$$\frac{dN}{dt} = \frac{ln(2)}{T_{1/2}}N$$

Half life(yr)	Events/tonne/yr*
10 ²⁶	30
10 ²⁷	3
10 ²⁸	0.3
10 ²⁹	0.03
10 ³⁰	0.003

Mass required for 1 decay/year

*for xenon

Half life [yr]	Atoms	⁷⁶ Ge [t]	¹⁰⁰ Mo [t]	¹³⁰ Te [t]	¹³⁶ Xe [t]
10 ²⁷ years	1.4x10 ²⁷	0.18	0.24	0.31	0.32
10 ²⁸ years	1.4x10 ²⁸	1.82	2.4	3.11	3.26
10 ²⁹ years	1.4x10 ²⁹	18.2	24	31.1	32.6
10 ³⁰ years	1.4x10 ³⁰	182	240	311	326

Xenon detectors

Detector Type	Phase	Example Experiments
Gas TPC	Gas	NEXT, PandaX-III, Gotthard
Liquid TPC (single-phase)	Liquid	XMASS, EXO-200
Dual-phase TPC	Liquid/Gas	XENON, LUX, LZ, PandaX
Xe-doped Liquid Scintillator	Liquid	KamLAND-Zen
Wire Chamber / Proportional Counter	Gas	RXTE, X-ray astronomy
Ar–Xe Mixtures	Liquid	R&D
Solid Xenon	Solid	R&D
Negative-ion / Digital TPC	Gas	R&D

Xenon detectors

Detector Type	Phase	Example Experiments
Gas TPC	Gas	NEXT, PandaX-III, Gotthard
Liquid TPC (single-phase)	Liquid	XMASS, EXO-200
Dual-phase TPC	Liquid/Gas	XENON, LUX, LZ, PandaX
Xe-doped Liquid Scintillator	Liquid	KamLAND-Zen
Wire Chamber / Proportional Counter	Gas	RXTE, X-ray astronomy
Ar–Xe Mixtures	Liquid	R&D
Solid Xenon	Solid	R&D
Negative-ion / Digital TPC	Gas	R&D

Advantages of the TPC types

Gas

- No Cryogenics
- Excellent Energy resolution
- Long tracks for topology
- Tune-able cherenkov discrimination
- Easier staging
- Current 0v2B limit:
 - 5.5-13x10²³yr

Liquid

- Self-shielding
- Project most advanced
- Current 0v2B limit:
 - 5.6x10^25 yr EXO-200

Dual-phase

- Self-shielding
- Low energy threshold
- Other physics (DM, etc)
- Current 0v2B limit:
 - 2.1x10²⁴ PandaX-4T

Proposal #1

Decide on one detector for the whole xenon TPC community.

- Advantages: Substantial cost savings, aligned community would be very effective with sponsor(s)
- **Problem**: Which technology? There are many details and each scientist has different intuition about what path to take (technically and politically) and even differences in goals.

How to Make Progress...

- While we consider proposal #1, what can we do to work in that direction, or at a minimum not destructively interfere?
- Is there any significant disadvantage to work more closely as a xenon community?
 - Workshops
 - Shared technical projects and resources

_ ...

Proposal #2 (not mutually exclusive)

Form a consortium (or similar) to make it easier to work together on projects.

- Advantages: Maybe lower cost a bit, leverage the entire community, show funding agencies that we are serious and can work together.
- Disadvantages: Collaborations letting go of some control, possible irreconcilable differences in goals, requires lots of communication, may not be stable against a few disruptive folks, <u>likely to be the slowest path</u> after not working together at all, etc...

Some Ideas of Common Interest

- Xenon Acquisition (both natural and enriched)
- High Voltage Testing and Research in Xenon
- Co-locating experiments to share hardware
- Staged experiments using the same shielding
- Radioassay
- Improved photon sensors and electronics
- Improved microphysics
- Common simulation and sensitivity assessment tools
- DAQ and controls

Xenon Acquisition

Slide from Thomas

Challenge Xe Procurement (in tonnes)

				* extrapolated
	Experiment	Natural Xe req.		Xe enriched at 90%
[nEXO	51 t*	←	5 t
over By	NEXT-HD	10 t*	←	1 t
	NEXT-HDMM	51 t – 101 t	←	5t-10t
900	XLZD	60 t active (78 t)		
Multi purpose	XLZD	80 t active (100 t*)		
	PandaX-xT	43 t active (56 t*)		
Σ	Total Xe req.	202 t		

Experiment	Natural Xe		Enriched Xe
EXO-200	1.8 t	←	~200 kg (@80%)
NEXT-100	1.1 t	\leftarrow	~100 kg (@90%
KamLAND-Zen	7.7 t	←	~750 kg
XENONnT	~10 t		
LZ	~10 t		
PandaX-xT	~20 t		
Total Xe av.	50.6 t		

Crude assumptions (on entire slide!):

- Proposed next-generation experiments will require ~200 t of natXe by ~2035.
- Experiments hold 51 t equivalent nat Xe (40 t nat Xe and 1 t 136 Xe @90%).
- Global xenon production is estimated to be between 50 Largest single cost (after labor)
- Assumption: Order of 5 t/yr of Xe plausibly procurable w \$1.2 \$4 per gram as of 2024

Enrichment \$10 - \$15 per gram

Xenon Acquisition

- China has made a big impact on the availability Perhaps this solves the interference in the market to some degree, but that needs to be looked at more carefully.
- How can we share the xenon? Discussed at kilotonne workshop and informally between experiments.
- **Proposal #3**: Develop a community plan for xenon acquisition.

Conclusion

- We have the xenon TPC technology in hand to make some really great advance on important physics.
- The costs presented by the fragmented community appear to be a significant impediment.
- Perhaps we should think about a different path:
 - P1: Decide on one detector for the whole xenon TPC community.
 - P2: Form a consortium (or similar) to make it easier to work together on projects.
 - P3: Develop a community plan for xenon acquisition.
 - P4 Pn:Other ideas from this workshop

END

Signals in Xenon relevant to 0n2b

- Scintillation Light
- Charge
- Phonons
- Cherenkov
- Ba ion detection
- Electroluminesce

Readout Technologies

- Charge collection electrodes (pad, wires, etc)
- Townsend avilanche on to electrode
- PMT/ SiPM
- GEMs/ Micromegas