
Chroma-Simulation
Tutorial

nEXO Light Simulations Workshop
McGill University

October 21st, 2024
David Gallacher, PhD Candidate

Tutorial Part 1 - Outline
• What is Chroma
• What is Chroma-Simulation
• Chroma Simulation Components
• Simulation.py, Detector.py, Event.py, Output.py, Photons.py

• Creating a Simulation Yaml card
• Creating an OpticalProperties Yaml card
• Demo 1 - Building your first Detector
• Exporting Geometries into Chroma

10/21/24 nEXO Light Simulations Workshop 2

What is Chroma?

10/21/24 nEXO Light Simulations Workshop 3

• Chroma is a high performance optical photon
simulation for particle physics detectors
• Originally written by A. LaTorre and S. Seibert

• nEXO uses the Chroma Framework from
https://github.com/BenLand100/chroma
• Chroma has recent renewed support and is being developed

under https://github.com/pennneutrinos/chroma
• We will fast-forward to the stable development branch soon!

• Chroma + GPU libraries are kept in a singularity
container
• Works with NVIDIA GPUs
• Compatible with HPC cluster GPUs

• Geometry is defined by STLs
• No need for simplifying assumptions, export the whole

detector CAD as STL files and configure optical properties in
data tables

• GPU-based photon transport simulation

• Surface-based triangular mesh geometry

• Development in Python (core simulation
in CUDA-C)

• Does:
• Optical Photon Transport
• Wavelength Shifting
• Photon Detection

https://github.com/BenLand100/chroma
https://github.com/pennneutrinos/chroma

What is Chroma – Comparison with G4

GEANT4:
 A detector is a tree of nested
solids, each composed of some
material and mathematically
implemented by a particular C++ class.

Chroma:
 A detector is a list of oriented
triangles, each representing the
boundary between an “inside” and
“outside” material.

10/21/24 nEXO Light Simulations Workshop 4

What is Chroma-Simulation?

• Originally written by Ako Jamil, starting in
2019
• Used to generate light maps for 2021 nEXO

0vbb sensitivity study
• Python-based wrapper around Chroma

source code, standardizes input geometries,
output files, optical inputs and simulation
control
• Not currently embedded in nEXO-offline

full GEANT4 simulation + reconstruction
pipe-line

10/21/24 nEXO Light Simulations Workshop 5

How does Chroma-Simulation work?
• Singularity container contains Chroma source code + everything needed to run

simulation
• https://github.com/nEXO-collaboration/chroma-container
• https://github.com/nEXO-collaboration/chroma
• Automatically rebuilds containers when updated
• Requires NVIDIA GPU

• Chroma-simulation main program – “RunSim.py”
• https://github.com/nEXO-collaboration/chroma-simulation

• Define optical properties and simulation parameters in a subdir in Yaml/
• Loads geometries from Geometry/ (STL Files)
• Example:

• singularity exec --nv ../Chroma.sif python RunSim.py -y Yaml/LoLX/LoLX.yaml

Run the singularity container
Chroma-simulation ‘main’ program
Specify what to run for the simulation

10/21/24 nEXO Light Simulations Workshop 6

https://github.com/nEXO-collaboration/chroma-container
https://github.com/nEXO-collaboration/chroma
https://github.com/nEXO-collaboration/chroma-simulation

Chroma-Simulation Core Components

Simulation.py
Detector.py
Generator.py
Photons.py
Event.py & Output.py

10/21/24 nEXO Light Simulations Workshop 7

Chroma-Simulation Core Components

Simulation.py
Main simulation program, calls and initializes
other classes for running simulation. Fairly
lightweight.

Propagates photons to GPU using chroma
commands

Delegates work to Detector.py, Generator.py,
Events.py

10/21/24 nEXO Light Simulations Workshop 8

Chroma-Simulation Core Components

Detector.py
Simulation geometry builder and optical
property handler

Reads in STL files using info from simulation
yaml card, and applies optical properties to
meshes

Optical properties can be applied as granularly
as triangle-level (In and out separately), but
generally applied to entire mesh

10/21/24 nEXO Light Simulations Workshop 9

Example of detector visualizer (flag –v)
for LoLX2 detector

Chroma-Simulation Core Components

Generator.py
Manages position generation for chroma-simulation

Choose position generator in Simulation table with
• PhotonLocation: 'Point = 100.0,0.0,0.0’
Lots of options for position generators, options for
coincidence (multiple sources/point or multiple points per
source)

Can configure additional yaml inputs if needed, outputs 3
arrays:
• Position (Nx3)
• Direction (Nx3)
• ExtraData (NxM)

10/21/24 nEXO Light Simulations Workshop 10

Example of mounted laser generator, starting photon
points (red) and end-locations (black) for test geometry

Chroma-Simulation Core Components

Photons.py
Defines simulated photon properties

• Wavelength, direction (from Generator, or custom), time
off-set, polarization

Returns Chroma.photons objects to be sent to GPU
for transport

Can define simple or complex photon sources, for
example:

• “Photonbomb” - Isotropic randomly polarized emission
from a point

• “Cherenkov” – Full pythonic Cherenkov emission
simulation, takes in charged particle info from
Generator::ExtraData and requires additional table in
Simulation.py to define material properties

10/21/24 nEXO Light Simulations Workshop 11

Example of Photon generator sampling (External Crosstalk)

An
gl

e
(w

rt
 n

or
m

al
) [

de
g.

]

Wavelength [nm]

Chroma-Simulation Core Components

Event.py & Output.py

Helper class definitions to clean up code and improve maintainability
3 Classes:

• H5Writer
• Definitions of groups and structure of output H5 File, additional methods for writing meta-

data
• EventReader

• Reads Simulation.yaml and OpticalProperties.yaml and creates “Events”
• Number of Events = NumberOfSources

• Calls Generator.py, then passes results to Photons.py to create simulation events
• EventWriter

• Takes Chroma output from GPU and formats it into output using H5Writer, uses Utilities.py to
calculate additional information for output analysis

10/21/24 nEXO Light Simulations Workshop 12

Other Parts

• Geometry/
• Experiment dependent subdirs for STL files

• Data/
• Info for simulations, more complex input data files

• Analysis/
• Project specific analysis scripts and notebooks, look here for examples!

• Documentation/
• Markdown documentation folder, we will be updating this together!

• ROOT/
• Some utilities and examples for running ROOT input or using UpROOT

• Utilities/
• Additional useful scripts for generating simulation inputs or looking at output

10/21/24 nEXO Light Simulations Workshop 13

Simulation Yaml Cards
Contains 3 main tables
Detector
• Name of detector and path to

STL files
• Options to cache detector for

faster startup
• Define photon “detector”

components and orientations
• Choose origin of simulation

geometry

Simulation
Components
10/21/24 nEXO Light Simulations Workshop 14

Simulation Yaml Cards
Simulation
• Generator:

• Photon generator name
• PhotonWavelength:
• Optional override of photon

wavelength (Default is 178 nm, or
custom from Photons.py)

• NumberOfPhotons:
• Photons per “event” overridden by many

generators
• NumberOfSources:

• Number of ”events” for most generators where 1
position ≣ 1 event

• NumberOfRuns:
• Repeats simulation ‘N’ times

10/21/24 nEXO Light Simulations Workshop 15

Simulation Yaml Cards
Simulation
• PropogationMode:

• Step or total, most simulations use Total, use Step
for debugging or detail checks

• PathPlot:
• Option to draw photon path from Step propogation

• OutputPath/OutputFilename/OutputFiletype:
• Output file specifications, will make directory if it

doesn’t exist
• Only HD5F works reliably now

• Seed:
• -1 for random seed, or specify for repeated sims

• SaveVariables:
• “All” or “Most” options for full or almost-complete

output
• Option to just specify a list of variables you want for

faster sim writing
10/21/24 nEXO Light Simulations Workshop 16

Simulation Yaml Cards
Components
Map of STL file names to optical
properties

• Key of OpticalProperties.yaml tables
become entries in Components table
• Spelling and case sensitive!!

May be lists or singular, colors defined
in Detector.py
Detector orientation in Detector table
defines list ordering (See Detector.py)
Name of component must be
identical to a substring in
desired STL Filename
10/21/24 nEXO Light Simulations Workshop 17

Optical Properties Yaml Cards

• Two types of properties
• Surface Properties
• Bulk Properties

• Surface Properties:
• Absorption, Transmission, DiffuseReflectivity,

SpecularReflectivity, Reemission,
IndexOfRefractionRe,IndexOfRefractionIm,Thicknes
s, SurfaceModel

• Bulk Properties:
• IndexOfRefractionRe, AbsorptionLength,

ScatteringLength, Density, Composition
• Can be singular or WL dependent
• Helper scripts for converting CSV to Yaml for

WL-dep in Utilities/
• Wavelength in nm, lengths in mm

10/21/24 nEXO Light Simulations Workshop 18

Building your own detector
Demo – 1 - CAD for Chroma-Simulation and Exporting Geometries
(David switches to Fusion-360)

10/21/24 nEXO Light Simulations Workshop 19

Recap – Part 1

• Chroma – Source code written primarily in CUDA-C for ray-tracing photon
transport on NVIDIA GPUs
• Chroma-Simulation – Python wrapper around Chroma for nEXO and other

LXe setups to use Chroma easily
• Singularity Container – Virtualized OS with Chroma and all simulation

software needs pre-installed and compiled
• Core code for Chroma-Sim is in Simulation/
• Parameters for simulation and optics are kept In Yaml cards (JSON but

better) – Be careful about spelling always!
• Geometries exported from CAD need to share a single origin and

coordinate system! (Very important)

10/21/24 nEXO Light Simulations Workshop 20

Questions?
Break time

10/21/24 nEXO Light Simulations Workshop 21

Tutorial - Part 2 Outline

• Simulation Inputs
• Adding a new position generator
• Adding a new photon generator
• Demo 2- Running your first Simulations

• Detector visualizing
• Photon Tracking

• Output File Components
• Analyzing Output Files
• Additional Info
• Demo 3 – nEXO Offline to Chroma (Time permitting)

10/21/24 nEXO Light Simulations Workshop 22

Running Simulations

On workstation:
singularity exec --nv ../Chroma.sif python RunSim.py -y
Yaml/LoLX/LoLX.yaml
• -y path to Yaml file for this simulation
• -v flag at the end for visualizer
• -d debug flag for prints

On clusters:
singularity exec --nv -B /project/def-tbrunner/software/ ../Chroma.sif
python RunSim.py -y Yaml/LoLX/LoLX.yaml
• -B flag binds project directory into Singularity for file system navigation

10/21/24 nEXO Light Simulations Workshop 23

Position Generators

Lots of position generators to choose from
(See Generator.py)

Some need extra inputs (Can be separate or
in the string)

Examples:
1. PhotonLocation: 'Point = 100.0,0.0,0.0’
2. PhotonLocation: ‘ROOT’

Position generator input strings are
sanitized in Event.py, additional Yaml tables
are possible for complex generators

10/21/24 nEXO Light Simulations Workshop 24

Photon Generators

Fewer Photon generators, Most
of our applications are
PhotonBomb-like or Laser-like

Custom/More complex
generators added recently for
direct scintillation/Cherenkov
simulations and SiPM External
Crosstalk

Defined in Simulation Table:
Generator: ‘Beam’

10/21/24 nEXO Light Simulations Workshop 25

Extending Position and Photon Generators

• For many applications, its cleaner and better practice to define
custom generators
• When you should do this:
• Other people will run your code
• Other people will need to understand/refer to your simulation output
• You need write a custom python script anyways to create a CSV of “Point”

sources already

• When you shouldn’t do this:
• Undefined parameters or algorithms
• Just experimenting

10/21/24 nEXO Light Simulations Workshop 26

Adding a new position generator

Needs:
• Algorithm for position generation, lots of examples of random sampling in

Generator.py already for reference
• All Meshes and ”Detector” info available in Generator class

• Input parameters in string (Need to sanitize input in Event.py)
• Or Input parameters hardcoded (Bad)
• Or Input parameters in custom table in Simulation Yaml (Good, but don’t hardcode it as

required, check if it exists and throw a warning if not!)
• Add function to Generator.py class Generator

• Add function name to dictionary of functions “buildGenMap”
• Binds input Yaml PhotonLocation name to Generator class function name

Must output (N sources):
• Position (Nx3)
• Direction (Nx3) (Can be None if we don’t care but must be Position-shaped)
• ExtraData (NxM) (optional, can be None)

10/21/24 nEXO Light Simulations Workshop 27

Adding a new photon generator

Needs
• Photons are made from position generators in Event.py::EventReader::CreateEvents
• def UseGenerator(NPhotons, Position, Direction=None, Wavelength=178.0, Generator='PhotonBomb',

Diameter=1.0, ExtraData=None):

• Define function in Photons.py module file
• Add to chained if-elses in UseGenerator
• Can override WL, or direction, apply time-offsets and polarization
• UseGenerator is called once per source location

• Can have multiple source locations per “event” through coincidence or ROOT input
Must output

• from chroma.event import Photons
• Chroma photons object, takes in np.arrays (one entry per photon)
• return Photons(Position, Direction, Polarization, Wavelengths)

10/21/24 nEXO Light Simulations Workshop 28

Running your first simulation
Demo – 2 - Running Chroma Simulations
(David demonstrates on his laptop)

10/21/24 nEXO Light Simulations Workshop 29

Output File Components
Default is Hdf5 file format, was testing UpROOT
Ttree writing but very buggy currently for vector
branches.

• Chroma container source code has pyROOT and has option to write ROOT files
using pyROOT

Five main components to output file:
1. Metadata

• One entry per file
• Dumps Simulation Yaml used and other info, option

to dump optical parameters to h5 file
2. Event Group

• One entry per simulation event
• NumHitChannels
• NumDetected
• NumPhotons

3. Photon Group
• One entry per created photon
• Flags (bit-map of history of photon interactions from

Chroma)
• PhotonWavelength (nm)
• StartPosition (x,y,z [mm])
• EndPosition (x,y,z [mm])
• LastHitTriangle (name)
• PhotonTime (ns)

4. Channel Group
• One entry per event, array-like
• ChannelIDs (Map of Channel index to ID)
• ChannelTimes (Array of hit time of last photon on

channel ’n’)
• ChannelCharges (Array of total number of detected

photons on channel ‘n’)
5. Detected Photon Group

• One entry per detected photon
• DetectedPos (EndPosition for this detected photon)
• DetectorHit (x,y,z center position of hit detector)
• DetectorHitID (ID of hit detector)
• IncidentAngles (Angle of incidence when detected)10/21/24 30

Analyzing Output Files

• Look in Utilities/ and Analysis/ for
inspiration, don’t be afraid to ask on
#chroma channel on nEXO slack!
• Property and Group is duplicated

currently
• See NumPhotons on right for reference

• Use Utilities/printSimulationOutput.py to
get a feel!
• Once you’ve identified your analysis

needs, trim the SaveVariables input
specification to speed up simulation time!

10/21/24 nEXO Light Simulations Workshop 31

Additional Info – Standalone NEST

• Incorporate NEST into chroma-simulation using NESTpy
bindings (NEST 2.0) - https://pypi.org/project/nestpy/
• This uses NEST models to produce the mean number of

photons for a given particle type, energy, and E field
• Can define static field or field map (3d look-up-table)

10/21/24 nEXO Light Simulations Workshop 32

https://pypi.org/project/nestpy/

Additional Info – GEANT4 -> ROOT + NEST
• To integrate with G4 (as a 2-stage simulation), we can output some info from

the G4 simulation to a ROOT File to be read into Chroma-simulation
• The TTree format and an example of TTree building required is in :

• [ChromaPath]/ROOT/sampleTree.C
• We need a few things:

• Energy deposit number for given ’event’ (ndep)
• Event ID (For counting ndeps per event to simulate)
• Energy deposited at each deposit (eDep)
• Position of each deposit (X,Y,Z)
• Particle ID for each deposit (PDG Code)
• Time of each deposit (tDep)
• Momentum direction (x,y,z vectors)
• Energy of the particle when depositing the energy at this step

• This can be stored in a simple TTree which is read into a new position
generator “ROOT”
• [Simulation][PhotonLocation] = ROOT, Read into a pandas DF using UpROOT

10/21/24 nEXO Light Simulations Workshop 33

Additional Info – Coincidence Generation
In order for ROOT input to work, I needed to abstract the concept
of “coincidence”
Included options for “manual” coincidence

Define this “Coincidence” table in your Simulation table of
Simulation yaml.
Level = Number of coincidences per source
Methods:

• 'SamePos’, different photon type, same position as this primary source
• 'PileUp’, different positions and same photon gen. type
• 'PileUpDiff’for different positions and different types
• 'None' for no coincidence (or don’t define this table)

DelayMethod: Option to include a time delay between coincidence
events
YamlPath: Path to yaml file that contains the Simulation table for
the coincidence generation (uses whats needed for a given
Method)

10/21/24 nEXO Light Simulations Workshop 34

Recap – Part 2

• First debug check should always be for spelling of names
• Check Components table keys to STL names
• Check Components table entries to OpticalProperties table keys
• Check OpticalProperties table entry spelling against search terms in

Detector.py

• Easy to extend Chroma-simulation generators, code that does nEXO
analysis should be part of Chroma-simulation for review and
reproducibility
• Can produce scintillation light directly in Chroma-simulation using

NEST model, more complex generators are possible

10/21/24 nEXO Light Simulations Workshop 35

nEXO-Offline Into Chroma
Demo - 3 – nEXO Offline Simulation output into Chroma
Time-permitting

10/21/24 nEXO Light Simulations Workshop 36

Thank you!
Questions?

10/21/24 nEXO Light Simulations Workshop 37

Guest Access to Chroma Workstation

Host: 132.206.126.37
User: nexoGuest
Pass: nEXO2024

Only a few people can run on the GPU simultaneously, be considerate!
Feel free to make more directories and clone chroma-simulation for
your needs

10/21/24 nEXO Light Simulations Workshop 38

