
Data Management

May 17, 2023 @ STEADY Workshop

Shiny Brar
he/him/il

Technology Lead &
Software Manager

CHIME/FRB Telescopes

Data
Governance

Industry Lingo

Architecture

Storage & Operations

Modelling & Design

Integration

Metadata

Quality

Documentation

Security

Data
Management

Academic Lingo

You have to do everything →

I will do everything!

I can do somethings…

What do I need to do to graduate?

Data

Overview

● Data
○ Storage Mediums
○ File Systems
○ Archetypes

● Management
○ Why?
○ How?
○ Best Practices

● Case Study
○ CHIME/FRB Telescopes

Storage Mediums

~500TB → 1PB

1 → 100 MB/s
secs → minutes
$

Non Volatile
Basically a Walkman!

Magnetic Tape

500GB → 16TB

1 → 10ms
100 → 500 MB/s
$$

Non Volatile
Spinning Platter

Hard Disk Drives

120GB → 4TB

~1 → 10 us
~0.5 → 3 GB/s
$$$

Non Volatile
No Moving Part

Solid State Drives

4GB → 128GB

~1 → 100 ns
~10’s GB/s
$$$$

Volatile

Random Access Memory

32→256 KB
256KB → 8MB

instant / ~ps
~100x / 25x > RAM
$$$$$

Volatile

L1/L2/L3 Cache

Storage Systems

Magnetic TapeHard Disk Drives

Hierarchical Structure
● Boot Sector
● File System Metadata
● File Allocation Structure (File Systems)
● Directories
● File Data

Solid State Drives

Matrix Structure
Rows x Columns
Addressable Grid

Random Access
Bit/Byte Level Address

Random Access Memory

Lines of data!
—————
🫥

Hit or Miss

L1/L2/L3 Cache

Storage File Systems

Magnetic TapeHard Disk Drives

Matrix Structure
Rows x Columns
Addressable Grid

Random Access
Bit/Byte Level Address

Random Access Memory

Lines of data!
—————
🫥

Hit or Miss

L1/L2/L3 Cache

Hierarchical Structure
● Boot Sector
● File System Metadata
● File Allocation Structure (File Systems)

Solid State Drives

Directories
Files
Pirated Gaming Data etc.

Storage File Systems

● Hierarchy
○ Fiction / Non-Fiction / Topic → Folders / Sub-Folders

● Metadata
○ Spine / Book Cover → Name, Size, Type of File

● Allocation
○ Books on a Shelf → Files on storage medium

● Access
○ Locate & Borrow → Open, Read & Write

● Permissions
○ Dark Art Sections!

Storage File Systems

Zettabyte File System
AdvancedZFS

● Data Integrity & RAID like capability
● Large Scale Deployments
● Native support for macOS & Windows

Fourth Extended File System
Linuxext4

● Performance & Scalability
● All the above features
● Limited Compatibility

Apple File System
macOS & iOSAPFS

● Designed for modern storage, e.g. SSD’s & Flash
● NTFS + Snapshotting & Shared Spaces
● Read only access on other OS

New Technology File System
Mainly WindowsNTFS

● Provides permissions / encryption / compression
● Improved reliability
● Read only access on other OS

File Allocation Table – FAT32 / exFAT
Windows, macOS, LinuxFAT

● Simple & Lightweight
● Max file size (4GB) & Max partition (2TB)
● Lacks permissions

Storage Archetypes: RAID

● Redundant Array of Independent Disks
● Combines multiple physical storage systems into a single logical unit
● Improves redundancy (parity), performance (stripe) or both.

RAID 0 RAID 3 RAID 6RAID 1

Storage Archetypes – RAID

Redundant Array of Independent Disks

● Combines multiple physical storage systems into a single logical unit
● Improves redundancy (parity), performance (stripe) or both.

RAID 0 RAID 3 RAID 6RAID 1

sudo apt-get install mdadm
sudo mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdX1 /dev/sdY1
sudo mkfs.ext4 /dev/md0

Storage Archetypes – Zettabyte File System

● The Librarian who manages with remarkable efficiency & intelligence.
● Comprehensive: File System + Volume Manager
● Operates at higher levels, sitting on top of storage media or RAID
● Integrity checks via checksums
● Snapshots, clones, deduplication, compression, scalable
● Copy-on-Write!
● Not simple but simpler than RAID

Storage Archetypes – Limitations of File Systems

● File Size & Count
● Total Storage Capacity
● Interoperability
● Metadata Overhead
● Limited to 1 node/server/computer
● Practical limit of ~1-2PB

Storage Archetypes: Massively Scalable Storage

● Infinitely Scalable
● Store objects not files
● Objects served as URLs
● CRUSH Algorithm

○ Deterministic Mapping
○ Failure Aware
○ Load Balancing

● E.g. Google Drive.

Management

Why manage data?

Why manage data?

● Ensuring Accuracy
○ By organizing and documenting your data you can easily track changes
○ Ensures integrity of research

● Completeness
○ Standardized protocols of collecting and storage of data
○ Reduces risk of missing critical information

● Accessibility over time
○ Access and retrieval even after significant amount of time
○ Longevity of research!

● Sharing & Collaboration
○ Fosters transparency & reproducibility
○ Validation of research!

● Avoid Data Loss
○ It’s not important, unless it was.
○ All your research should not be on your laptop!

Data Accuracy

● Use Version Control to Tag data

import subprocess
import h5py
import pkg_resources

Get the Git commit hash
git_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode().strip()
Get the version of your Python package
package_version = pkg_resources.get_distribution('mypackage').version
Open the HDF5 file in write mode
with h5py.File('data.hdf5', 'a') as f:
 # Create or update a dataset in the header group to store the metadata
 header_group = f.require_group('/header')
 header_group.attrs['git_hash'] = git_hash
 header_group.attrs['package_version'] = package_version

Data Accuracy

● Use Version Control to tag data
○ Traceability

○ Enables Collaboration

○ Pinpoint introduction of bugs

○ Safe place to experiment

Data Accuracy

● Use Version Control to tag data
● Hierarchical Data Structure

○ Store data in folders & subfolders …
→ <project>/<datasource>/<datatype>/<instrument>/…

Data Accuracy

● Use Version Control to tag data
● Hierarchical Data Structure

○ Store data in folders & subfolders …
○ Use meaningful naming conventions

→ Consistent naming conventions
→ Include metadata in the filename e.g. analysis_success.h5

○ Parametrize and automated file paths
→ Where ever possible, automate file path generation

Data Accuracy
import os
import datetime
import subprocess

Parameters
dataset_name = "steady"
subset_name = "data_management"
file_extension = ".csv"

Get the current date in YYMMDD format
current_date = datetime.datetime.now().strftime("%y%m%d")
Get the Git commit hash
git_sha = subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode().strip()
Define the base directory where the files will be stored
base_directory = "/path/to/data"
Generate the file path using placeholders or variables
file_path = os.path.join(
 base_directory,
 dataset_name,
 current_date,
 f"{subset_name}_{current_date}_{git_sha[:7]}{file_extension}"
)

Data Accuracy

● Use Version Control to tag data
● Hierarchical Data Structure

○ Store data in folders & subfolders …
○ Use meaningful naming conventions
○ Parametrize and automated file paths
○ Consider file system limitations

→ Character Restrictions: Windows does not allow : <, >, :, ", /, \, |, ?, and *.
→ Case Sensitivity & Path Separator: / vs. \
→ Max File Length: Windows 256 // Linux 4096

○ Python Note: Create virtualenv in folders

Data Accuracy

● Use Version Control to tag data
● Hierarchical Data Structure

○ Store data in folders & subfolders …
○ Use meaningful naming conventions
○ Parametrize and automated file paths
○ Consider file system limitations
○ Create the highest bisecting hierarchy

→ You should be able to go from the biggest to smallest data product intuitively

Data Completeness

● Use data models where possible

→ For analysis parameters
→ When saving data
→ When loading data
→ Especially when transforming!

from pydantic import BaseModel, Field, FilePath
import yaml

Define the data model using pydantic
class DataModel(BaseModel):
 datapath: FilePath(exists=True)
 iterations: int = Field(..., gt=0, lt=10)
 threshold: float = Field(..., ge=0, le=1)

Load YAML data into the data model
def load_parameters(file_path):
 with open(file_path, 'r') as f:
 config_data = yaml.safe_load(f)
 parameters = DataModel(**config_data)
 return parameters

Example usage
file_path = 'data.yaml'
data_model = load_data_model_from_yaml(file_path)
print(data_model)

Data Accessibility / Sharing & Collaboration

● Document common practices
→ Include a README.md with the code that analyzes data
→ Define the expected input / output data structures

● Use common and stable data formats from your field
→ csv, json, par, hdf5, fits etc.
→ e.g. even though commonly used, would advise against npy format.

● Use packages and formats with the largest community support
●

Avoid Data Loss

● Redundant Storage Archetypes
● Regular Data Backups

→ Local Backups > Cloud Backups
→ Cloud syncs can cause 10-100x slow down in access time

● Uninterrupted Power Supply (UPS)
● Robust Security Options

→ When in doubt do not give write permissions
→ Generally advise against password access, instead always use ssh keys

● Training & Awareness
→ Mean Time Before Failures (MTBF)

Best Practices

● Time Rule: I/O should take no more than 10% of compute time
→ Faster storage medium

→ Faster storage archetype
→ Split your saved data products

● Size Rule: Depends on your budget, but…
→ ~10GB → SSD
→ ~10TB → HDD
→ ~10PB → Tape

● More I/O Speed
→ Read the Time Rule

● Always be redundant or backed up!
● Documentations

Case Study: CHIME/FRB Telescopes

Fast Radio Bursts

● Transient, ms-scale
● Astrophysical phenomenon
● Intense pulse of radio waves
● Extragalactic in origin.
● Enormous energy.

CHIME Telescope

CHIME/FRB Telescopes: Data

● 4 Telescope Sites
● 2.2 TB/sec → 190 PB/day → 69 EB/year
● ~ Every computer / phone / video stream for entirety of Canada

● 69 EB/year reduced to ~500PB/year
● Search this data to find FRB’s
● All FRB data from previous 5 years → 750 TB
● ~0.002% of all data → ~5 minutes of data.
● Everything else is discarded.

CHIME/FRB Telescopes:
Storage Medium / File System / Archetype

● ~23 TB RAM spread over ~400 nodes
● ~40TB High Speed Flash Storage
● (60+40) x 10TB HDDs = 1 PB Raw HDD Storage
● Configured ZFS File System
● RAID z5 with 10% Hot Spares
● Defaults User Permissions: Read Only
● Parameterized Path Structure

/data/<telescope-site>/<data-product>/[raw|processed]/YYYY/MM/DD/astro_[ev
ent]/*.h5

● Data backed up in ~realtime to CANFAR (Compute Canada)

What is Datatrail?

● Data management platform built for CHIME
● Scalable to run at multiple sites - CHIME, outriggers, future outriggers?
● Registers data into database
● Handles deletion and replication between sites
● Policy driven approach to products

○ Allows different rules to be applied to different types of data
■ Eg. Classified FRBs backed up and kept forever
■ RFI stays local until deleted a few weeks later

Datatrail: Overview

Interacting with Datatrail

● Interaction with Datatrail via CLI

● Users can:
○ List all datasets in Datatrail
○ Download datasets
○ View dataset policies
○ List where data is stored
○ See number of files and file size

Version Control - Types

Centralised:

● Single complete copy
● Users write to main branch
● Unavailable while checked out

Pros/Cons:

● Works well with large files
● Easier to understand
● One point of failure
● Lack of stability
● Online

Centralised

Distributed

Version Control - Types

Distributed:

● Full copy of repository checked out
● Commit, branch, and merge locally
● Requires more storage space

Pros/Cons:

● Backups
● Faster workflow
● Offline
● Less intuitive
● More prone to conflicts

Centralised

Distributed

