
Git Tutorial

Dr. Steffen Stärz

Part I: Git Basics
Part II: Git Rebase

Part III: Beyond Git: GitLab/GitHub/...

16 May 2023
(GitLab Enterprise Edition 15.0.4-ee)

About the presenter

2015: Dr. rer. nat. (PhD), Technische Universität Dresden, Germany
”Energy Reconstruction and high-speed Data Transmission with FPGAs
for the Upgrade of the ATLAS Liquid Argon Calorimeter at LHC”

2015-2018: Applied Physicist Fellow at CERN in the EP-ADE-CA
group, LAr calorimeter

LAr Online Software Coordinator
Coordinator of the ”Demonstrator” group (pre Phase-I Upgrade)

2019-now: (Research → Academic) Associate in Department of
Physics at McGill University

Former Firmware Coordinator and now Lead Firmware Technical Manager
for the LASP board (ATLAS LAr Phase-II Upgrade)

⇒ ATLAS Liquid Argon Calorimeter, Software (C++), firmware (VHDL),
git, GitLab, CI/CD, ...

Steffen Stärz (McGill) Git Tutorial 16 May 2023 2

https://cds.cern.ch/record/2030122
https://cds.cern.ch/record/2030122

Plan of the Day

1 Git Basics
Concept
Novice
Beginner
Competent
Expert

2 Git Rebase
The rebasing problem
Git rebase features

3 Beyond Git: GitLab/GitHub/...

Remark for this tutorial: Links are lowlighted in black.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 3

Part I: Git Basics

Git Basics

Disclaimer: Git is awesome!
This tutorial cannot cover all aspects and is hence completely incomplete!

Only basic commands with few options are presented here.

Git comes with its help - read it!
From shell: git help [subcommand] (or man git [subcommand])

Official Git Tutorial
Git Cheat Sheet (exhaustive but by definition incomplete list)

This (part of the) tutorial: Git commands
1 Concept: The general idea of git
2 Novice: Git setup
3 Beginner: Basic Git commands
4 Competent: Advanced Git commands
5 Expert: Fancy Git commands

Follow this tutorial with the sandbox Git repository to gain experience
Steffen Stärz (McGill) Git Tutorial 16 May 2023 5

https://git-scm.com/docs/gittutorial
https://staerz.web.cern.ch/slides/GitCheatSheet.txt
https://github.com/staerz/sandbox

Git: Concept

Git Basics: Concept

What is Git!?
Version control is a system that records changes to a file or set of files
over time so that you can recall specific versions later. It allows to

revert selected files back to a previous state,
revert the entire project back to a previous state,
compare changes over time,
see who last modified something that might be causing a problem,
see who introduced an issue and when, ...

Git is a Distributed Version Control System:
Clients don’t just check out the latest
snapshot of the files; rather, they fully mirror
the repository, including its full history.

⇒ Every clone is a full backup of all the data:
client can work even if server is down.

This tutorial will explicitly not go into forks.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 7

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Git Basics: Concept

Git workflow1: The suggested work flow for any project

This tutorial will not cover CI/CD, but to give you a big picture:

Stable master → development on temporary branch → new stable master
1From the official GitLab documentation

Steffen Stärz (McGill) Git Tutorial 16 May 2023 8

https://docs.gitlab.com/ee/ci/introduction/

Git: Novice

Git Basics: Novice

http://www.xkcd.com/1597/

Steffen Stärz (McGill) Git Tutorial 16 May 2023 10

Git Basics: Novice

Git Setup: Remote profile

Make yourself known to the remote repository (e.g. GitHub)
Identification via SSH keys: Add your public key

1 Login to the repo (e.g. GitHub) with your account
2 Add your SSH keys in your profilea

1 Check your key: $ ls ˜/.ssh/id_rsa.pub
⇒ If not existing, create key: $ ssh-keygenb

$ cat ˜/.ssh/id_rsa.pub
⇒ long text, contains in the end sth. like username@host

2 Avatar → Settings → SSH Keys: copy & paste into ”Key” → Add key
⇒ Redo for all machines you’ll be working from

3 Add yourself an avatar
⇒ It’s not only nice, but also allows you to spot profile misconfiguration

aSSH is default for some projects, so make sure you set this up properly.
bDo not set a passphrase, otherwise each git push and git pull will be a pain!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 11

https://github.com
https://github.com
https://github.com/settings/keys
https://github.com/settings/profile
https://github.com/settings/keys

Git Basics: Novice

Git Setup: Local profile

Once set user name and email address git config

$ git config --global user.name yourusername

$ git config --global user.email you@cern.ch

⇒ Do for all machines you’ll be working from
Make sure it’s absolutely identical on all your machines!
Settings get written into your ˜/.gitconfig file

Steffen Stärz (McGill) Git Tutorial 16 May 2023 12

https://git-scm.com/docs/git-config

Git Basics: Novice

Git config and style up
Customize Git text highlighting!
$ git config --global color.ui true

$ git config --global color.status.header yellow

... or edit ˜/.gitconfig directly, e.g.:
[color]

ui = true
status = true

[color "status"]
header = yellow
added = green
updated = cyan
changed = red blink
untracked = magenta bold
branch = cyan
nobranch = black

[color "branch"]
meta = white bold

[user]
name = Steffen Staerz
email = steffen.staerz@cern.ch

[core]
editor = vim
pager = less -x4

And many more settings, see official documentation
Steffen Stärz (McGill) Git Tutorial 16 May 2023 13

https://git-scm.com/docs/git-config

Git: Beginner

Git Basics: Beginner

Get a Git repository

A) Cloning an existing (remote) Git repository git clone

Cloninga the sandboxb:
$ git clone ssh://git@github.com/staerz/sandbox.gitc

$ git clone <repo>: clone existing Git repository
$ git clone <repo> <dir>: ... into directory
$ git clone --recursive <repo>: ... with all sub-modules

aGiven you have rights to do so
bOnce you have that, go to slide 46 and play with the sandbox!
c For some reason GitHub suggests ’:’ in the url for SSH which is wrong!

B) Creating (local) Git repository git init

To create a new Git repository in the (existing local) directory project:
$ cd <project>

$ git init

Steffen Stärz (McGill) Git Tutorial 16 May 2023 15

https://git-scm.com/docs/git-clone
https://git-scm.com/docs/git-init

Git Basics: Beginner

Basic Commands

See what has changed git status

$ git status: shows everything
$ git status -uno: only status of files tracked by Git
$ git ls-files: list files tracked by Git in the current directory

Make gitst an alias for git status -uno

Adding files to index (staging area) (not yet committing!) git add

Before any commit, first tell Git which file to stage for commit via add:
$ git add .: add all files in the current directorya

$ git add file1 [file2 ...]: add file[s] explicitly
$ git add -u: add all updated (= modified) files

Use git status before and after git add to see effect
a Usually not desired unless the .gitignore file is set up properly!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 16

https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-add

Git Basics: Beginner

Basic Commands 2

What just happened: we’re half way!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 17

Git Basics: Beginner

Basic Commands 3

Tracking file modifications git diff

At any time, browse the differences using
$ git diff: show changes of all tracked files
$ git diff filename: show changes of file filename
$ git diff --cached: show changes of all staged files
$ git diff --cached filename: imagine what
$ git diff --word-diff: show more compact diff

Make git dif an alias for git diff --ignore-submodules --word-diff

Reverting the current modifications git checkout

Undo the last changes to a file (or more) since the last git add

$ git checkout -- filename: Restore only filename
$ git checkout -- .: Restore all files in the current directory

Steffen Stärz (McGill) Git Tutorial 16 May 2023 18

https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-checkout

Git Basics: Beginner

Basic Commands 4

Unstaging files (= ”un-add”) git reset

Remove files from the index via
$ git reset HEAD filename: remove only filename

Since Git 2.23.0, there is a new alternative Git command for that:
Unstaging files (= ”un-add”) git restore

Remove files from the index via
$ git restore --staged filename: remove only filename

Reverting the current modifications git restore

restore is also an alternative to checkout -- (previous slide)
$ git restore filename: Revert only filename

GIT−RESTORE(1) G i t GIT−RESTORE(1)
. . .
THIS COMMAND I S EXPERIMENTAL . THE BEHAVIOR MAY CHANGE.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 19

https://git-scm.com/docs/git-reset
https://git-scm.com/docs/git-restore
https://git-scm.com/docs/git-restore

Git Basics: Beginner

Basic Commands 5

Committing files git commit

Once staged for commit (added to the index), commit changes via
$ git commit: commit, editor (e.g. vima) opens to enter message
$ git commit --amend: ”update” your last commit (message)

Very use- and powerful: You forgot sth. in your commit or just spot a
typo (in actual code or commit message)?

⇒ E.g. modify culprit file, git add it again, then ”re-commit”
⇒ Replaces last commitb

$ git commit -m "message": directly enter commit message
aVim is the default, but can be changed via the ˜/.gitconfig file
bgit push in the meantime will result in a conflict requiring a forced push to remote (see later)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 20

https://git-scm.com/docs/git-commit

Git Basics: Beginner

Basic Commands 5.5

ht
tp

:/
/w

ww
.x

kc
d.

co
m

/1
29

6

In general avoid that and rather:
Use meaningful commit messages: avoid any information which is
obvious from the commit itself like ”Me: Updated file xyz”
Follow commit message conventions by the project (if any)

E.g.: mention the associated ticket in the commit:
”#123: Document usage of ... in README.md”

Steffen Stärz (McGill) Git Tutorial 16 May 2023 21

Git Basics: Beginner

Basic Commands 6

Browsing the history git log

$ git log: detailed commit log: who, when, what (message)
$ git log --oneline: single line per commit
$ git log --graph: ”GUI”: graph with branching info
$ git log filename: Only commits where filename was modified
$ git log --author="Jon": imagine what
$ git log -3 (or -n 3): show last 3 commits

Make gitlog an alias for git log --oneline --graph

Showing actual modifications git show

$ git show <commit>: show detailed modifications of that commit
$ git show <commit> --word-diff=color: inline highlighting
$ git show <commit> --name-status: affected files only

Steffen Stärz (McGill) Git Tutorial 16 May 2023 22

https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-show

Git: Competent

Git Basics: Competent

Prevent certain files to be ”git added” (Blacklisting)
Set file exclusions for tracking via .gitignore file (per repo), e.g. latex:
S p e c i f i e s i n t e n t i o n a l l y u n t r a c k e d f i l e s f o r t h i s r e p o s i t o r y
Find documentat ion (s y n t a x) h e r e : h t t p s : / / g i t−scm . com/ docs / g i t i g n o r e
#
F i l e s a l r e a d y t r a c k e d by G i t a r e not a f f e c t e d
##

don ’ t check i n any o f t h e t e m p o r a r i l y c r e a t e d l a t e x f i l e s :
∗−b l x . b i b
∗ . pdf

and so on . . .
nor any h i d d e n f i l e (e . g . . ∗ . swp f i l e c r e a t e d by e d i t o r s)
. ∗

a l s o don ’ t check i n any backup f i l e s p e o p l e might have c r e a t e d
∗ . backup
∗ . bak
∗ . o r i g
∗˜
∗ . s y n c t e x . gz

don ’ t check i n any f i l e i n s h a r e d
s h a r e d /∗

e x c e p t t h e f i g u r e s d i r e c t o r y
! s h a r e d / f i g u r e s /

e x c e p t t h e s t y l e f i l e s
! s h a r e d / s t y l e /

and e x p l i c i t l y a l l o w pdf ’ s (s i n c e a c t u a l l y e x c l u d e d v i a l i s t on top !
! s h a r e d / f i g u r e s / ∗ . pdf

Steffen Stärz (McGill) Git Tutorial 16 May 2023 24

Git Basics: Competent

Prevent certain files to be ”git added” (Whitelisting)
Set file exclusions for tracking via .gitignore file (per repo), e.g. latex:
S p e c i f i e s i n t e n t i o n a l l y u n t r a c k e d f i l e s f o r t h i s r e p o s i t o r y
Find documentat ion (s y n t a x) h e r e : h t t p s : / / g i t−scm . com/ docs / g i t i g n o r e
#
White−l i s t i n g approach : f o r b i d e v e r y t h i n g , o n l y a l l o w e x p l i c i t l y
#
We aim not to c o v e r a l l c a s e s , t h i n g s can a l w a y s be added by ”− f ” m a n u a l l y ;
and f i l e s a l r e a d y t r a c k e d by G i t a r e not a f f e c t e d anyway .
##

F i r s t , i g n o r e e v e r y t h i n g
∗
Now , white− l i s t a n y t h i n g t h a t ’ s a d i r e c t o r y
!∗/
and a l l t h e f i l e t y p e s we ’ r e i n t e r e s t e d i n :

Markdown f i l e s
! ∗ . md

s o u r c e f i l e s
! ∗ . t e x

#temporary s o u r c e f i l e s a r e f o r b i d d e n a g a i n
. ∗ . t e x

a l l o w f i g u r e s d i r e c t o r y
! s h a r e d / f i g u r e s /

Whitelisting is recommended as it is more restrictive than blacklisting.
Steffen Stärz (McGill) Git Tutorial 16 May 2023 25

Git Basics: Competent

Advanced Commands
Rename or move tracked files git mv

$ git mv <file> <newfilename>: Rename file
$ git mv <file> <directory>: Move file to directory

Removing tracked files git rm

$ git rm <file>: Remove file from repo and local file system
$ git rm --cached <file>: Remove file only from repo
$ git rm -r <dir>: Remove directory from repo and file system

Reset to some previous state git reset

$ git reset <file>: opposite of git add

$ git reset <commit>: reset to that commit (unstage changes)
$ git reset --soft <commit>: ”un-commit” (stage changes)
$ git reset --hard <commit>: reset and discard changes

Steffen Stärz (McGill) Git Tutorial 16 May 2023 26

https://git-scm.com/docs/git-mv
https://git-scm.com/docs/git-rm
https://git-scm.com/docs/git-reset

Git Basics: Competent

Branches

The idea of branches
Changes (even adding new files or the deletion of existing ones) in branches
are completely transparent to each other until branches are merged.
This allows parallel development of different features on a first come first
serve basis.

Git branches
Default branch is master (or mainab)

Main branch: should be always operational
Developments to be done in dedicated development branches

aFor repos created on GitLab 13.11++ (unless explicitly configured
differently by the instance admin) or GitHub since 1st Oct 2020

bThis tutorial will go with master

Steffen Stärz (McGill) Git Tutorial 16 May 2023 27

Git Basics: Competent

Branches 2

Changing branches git checkout

$ git checkout -b devbranch: create branch devbranch from
current branch (master or other: branching branches is allowed)

$ git checkout targetbranch: switch branches (only possible if
uncommitted changes don’t conflict targetbranch: Git complains)

Since Git 2.23.0, there is a new alternative Git command for that:
Changing branches git switch

$ git switch -c devbranch: create branch devbranch from
current branch (master or other: branching branches is allowed)

$ git switch targetbranch: switch branches (only possible if
uncommitted changes don’t conflict targetbranch: Git complains)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 28

https://git-scm.com/docs/git-checkout
https://git-scm.com/docs/git-switch

Git Basics: Competent

Branches 3

Working on devbranch and master was updated in the meantime:
How to include these updates into devbranch?

a) Merging branches git merge

$ git checkout devbranch: switch to devbranch (possibly
currently active)

$ git fetch origin master:master: update local master
$ git merge master: merge master to current branch

General idea: Keep developments independent!
⇒ While working on devbranch, any changes to other branches are

”invisible”: Nobody affects your (local) branch
⇒ If important update pops in, include it at your convenience
⇒ Avoid merging with other parallel dev branches (keep topology simple!)
⇒ Merge from master regularly to spot issues early and minimise chances

of divergent developments (Git nicely handles conflicts, but try to avoid)
Steffen Stärz (McGill) Git Tutorial 16 May 2023 29

https://git-scm.com/docs/git-merge

Git Basics: Competent

Branches 3

Working on devbranch and master was updated in the meantime:
How to include these updates into devbranch?

b) Rebasing branches (Applied for LASP FW) git rebase

$ git checkout devbranch: switch to devbranch (possibly
currently active)

$ git fetch origin master:master: update local master
$ git rebase master: replay devbranch onto updated master

General idea: Keep developments independent!
⇒ While working on devbranch, any changes to other branches are

”invisible”: Nobody affects your (local) branch
⇒ If important update pops in, include it at your convenience
⇒ Avoid merging with other parallel dev branches (keep topology simple!)
⇒ Rebase onto master to sequentialise developments (Git will handle

conflicts in case, just like when merging)
Steffen Stärz (McGill) Git Tutorial 16 May 2023 29

https://git-scm.com/docs/git-rebase

Git Basics: Competent

Branches 4

Least advisable branch workflow
Merge master back to development branch prior to its merge

More pictures and explanation here, see also the Git Rebase Part (Part II).
General→ Merge requests→ Merge method

Steffen Stärz (McGill) Git Tutorial 16 May 2023 30

https://fangpenlin.com/posts/2013/09/30/keep-a-readable-git-history/

Git Basics: Competent

Branches 4

Branch workflow with semi-linear history
Rebase to master prior to its merge

More pictures and explanation here, see also the Git Rebase Part (Part II).
General→ Merge requests→ Merge method

Steffen Stärz (McGill) Git Tutorial 16 May 2023 30

https://fangpenlin.com/posts/2013/09/30/keep-a-readable-git-history/

Git Basics: Competent

Branches 4.5

Branch names
Branches can be named almost anything, only some very not standard
patterns are forbidden, e.g. ’..’ (see git check-ref-format).

Branch naming: good practices
Good practice: Not problem but solution oriented branch name! E.g.:

fix-update-script

implement-feature-xyz

⇒ letters and dash as word separator

Branch name from issue title: conventions
See later: When working with GitLab/GitHub/... the branch name is
generated from the issue title automatically
⇒ Apply good practice already for issue title

Steffen Stärz (McGill) Git Tutorial 16 May 2023 31

https://git-scm.com/docs/git-check-ref-format

Git Basics: Competent

Working with a remote Git repository

Private (local) Git repository
Up to here, changes (in all branches) were local only.
Locally there are no restrictions:

Commit to master branch is allowed
There are no conventions to follow except your own

When working in a project with others: Conventions and Restrictions!
Best practice
X (Remote) master protected, only project maintainers can merge to it
⇒ NEVER directly commit to master!
Good practice

Branches follow workflow: Development → Verification → Master
⇒ Handle large projects with many developers
⇒ Many more complicated workflows possible, of course

Steffen Stärz (McGill) Git Tutorial 16 May 2023 32

Git Basics: Competent

Working with a remote Git repository

Private (local) Git repository
Up to here, changes (in all branches) were local only.
Locally there are no restrictions:

Commit to master branch is allowed
There are no conventions to follow except your own

When working in a project with others: Conventions and Restrictions!
Best practice
X (Remote) master protected, only project maintainers can merge to it
⇒ NEVER directly commit to master!
Good practice

Branches follow workflow: Development → Verification → Master
⇒ Handle large projects with many developers
⇒ Many more complicated workflows possible, of course

Steffen Stärz (McGill) Git Tutorial 16 May 2023 32

Git Basics: Competent

Communicating with remote

Get remote changes into local Git repository git pull

$ git pull: fetch remote changes and merge with local brancha

$ git pull --all: pull for all local branches
$ git pull origin master:master:

pull master without checkout of master while on another branch
aNote that git pull is a git fetch followed by a git merge:
fetching updates the local information about the remote repository and
mergeing finally applies these remote changes to the local branch

Get local changes into remote Git repository git push

$ git push -u origin <branch>: initial push of branch
$ git push: push (new commits) to remotea (branch already exists)

a configure git push to only push current branch: git config --global push.default current

Steffen Stärz (McGill) Git Tutorial 16 May 2023 33

https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-push

Git Basics: Competent

Merging to protected remote master
Best practice: Merging to the (protected) master branch is done via the
web interface via a Merge Request (GitLab) [or ”Pull request” on GitHub]:

But see the second part of this tutorial for the full work flow...
Steffen Stärz (McGill) Git Tutorial 16 May 2023 34

Git Basics: Competent

Tags

The idea of tags
Tags are human-readable labels (pointers) attributed to selected commits.
These commits (and hence tags) identify a given projecta status, usually
an operational version with a well defined list of features.

aIt is up to each project to define a dedicate tagging convention. Using semantic versioning is recommended.

Working with tags git tag

$ git tag <tagname>: create new simple tag
$ git tag -a <tagname>: create annotated tag
$ git tag --list: list all local tags
$ git push origin <tagname>: push tag to remote
$ git ls-remote --tags: imagine what
$ git checkout <tagname> -b <branchname>: imagine

Steffen Stärz (McGill) Git Tutorial 16 May 2023 35

http://semver.org/
https://git-scm.com/docs/git-tag

Git: Expert

Git Basics: Expert

Some random fancy stuff

I’m stuck in my development: Can you check it on <mybranch>?

Checkout any remote branch to a new local branch
$ git checkout -b <branch name> origin/<mybranch>

There is a stupid typo in my branch name!?

Rename branch git branch

$ git branch -m <newbranchname>

I’ve done stupid things on my branch, time to delete it!

Delete branch locally and on remote
$ git branch -d <branchname>

$ git push origin --delete <branchname>

Steffen Stärz (McGill) Git Tutorial 16 May 2023 37

https://git-scm.com/docs/git-branch

Git Basics: Expert

Some more random fancy stuff

I changed local commits (e.g. via --amend or rebase):

Force remote to overwrite its branch
$ git push -fa

a Remote changes (esp. remote-only commits) can be lost! Do a git fetch first to not loose anything!

My browser is dead - what are the current remote branches?

List (locally known) remote branches
$ git branch -r

I’ve done stupid things to local master, everything is messed up! Help!

Drop local changes and reset to remote master git fetch

$ git fetch --all

$ git reset --hard origin/master

Steffen Stärz (McGill) Git Tutorial 16 May 2023 38

https://git-scm.com/docs/git-fetch

Git Basics: Expert

Some particularly fancy stuff
I need to undo a commit that was done long time ago!

Revert commit git revert

$ git revert <commit>a

aA new (inverse) commit is created! Only works if current status is compatible with these changes.

All these branches don’t exist anymore remotely, get rid of them!

Delete all stale remote-tracking branches git remote

$ git remote prune origina

a Make grpo an alias for git remote prune origin (it’s very unlikely that you’d have another remote
repo)

I really need to pick this one commit, I need it, now!

Apply a single commit to the current branch git cherry-pick

$ git cherry-pick <commit>

Steffen Stärz (McGill) Git Tutorial 16 May 2023 39

https://git-scm.com/docs/git-revert
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-cherry-pick

Git Basics: Expert

One more word on remote

Recall origin from git pull and git push?
origin is the default name of the remote repository.
→ A repository can have multiple remotes, all distinguished by different
names!
Work with multiple remotes git remote

$ git remote add <name> <URL>: Add a(nother) remote repoa

$ git remote -v: List remotes (names and URLs)
$ git remote remove <name>: Guess what

aNote that <URL> can also be a local path, i.e. a some directory on your
local machine → helpful when trying to check if all files needed are committed

Only when you have multiple remotes, git push and git pull need
to explicitly know the name of it

Steffen Stärz (McGill) Git Tutorial 16 May 2023 40

https://git-scm.com/docs/git-remote

Git Basics: Expert

Intermediate work

Stash ongoing work git stash

$ git shash: Stash all current changes
$ git shash pop: Retrieve latest stash entry
$ git shash list: List all stash entries

Note that the stash is distinct from the staging area.

It’s meant for the case when you’re currently working on something, are
not yet ready to commit, but suddenly (→ ”hotfix”) need to switch to a
different topic for a while to come back soon after.

Let git stash be the exception to your work flow!
Possibly better make a ”quick and dirty” commit and fix (amend)

that commit once coming back to it.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 41

https://git-scm.com/docs/git-stash

Git Basics: Expert

Submodules
A repository can contain other repositories!

Useful to separate big project into smaller ones
⇒ Distributes developers over (semi-independent) repositories
.gitmodules stores information of submodules (URLs, paths)

Work with submodules git submodule

$ git submodule: List all submodules
$ git submodule add <repository>: Add a new submodule
$ git submodule update: Update to committed state
$ git submodule foreach: Do shell command in each submodule

git pull on a repo with submodules also fetches all submodules2

Option --recursive becomes important for some git commands
Once git submodule added, submodules are like files (git add)

Be vigilant to know which repo you actually commit to!
2Possibly subject to configuration

Steffen Stärz (McGill) Git Tutorial 16 May 2023 42

https://git-scm.com/docs/git-submodule

Git Basics: Expert

Git Pro Tip

Configure bash to show the current branch
Modify your ˜/.bashrc to contain the following:
p a r s e g i t b r a n c h () {

which g i t &>/dev / n u l l && g i t rev−p a r s e −−abbrev−r e f HEAD 2>
/ dev / n u l l | sed −e ’ s / .∗/ (&)/ ’

}
e x p o r t PS1=” [\u@\h \ [\0 3 3 [3 2m\]\W\ [\0 3 3 [3 3m\]\ $ (

p a r s e g i t b r a n c h) \ [\0 3 3 [0m\]] $ ”

to print the branch name (if in a repo) directly:
[staerz@staerz-dellt5820 sandbox (master)] $

Colours are your choice, of course:
33 is yellow, 32 is green
See more here...

Steffen Stärz (McGill) Git Tutorial 16 May 2023 43

https://misc.flogisoft.com/bash/tip_colors_and_formatting

Recap: Git Commands

Git Basics: Expert

Summary Part I: Git Basics

Commands that will be used regularly (and will be known by heart)

Everyday life commands
$ git checkout (or maybe git switch and git restore)
$ git status (or rather gitst)
$ git add

$ git diff

$ git commit

$ git log (or rather gitlog)
$ git pull

$ git push

Steffen Stärz (McGill) Git Tutorial 16 May 2023 45

Git Basics: Expert

Checking out the sandbox - step by step

1 Make sure to have (developer) access to the sandbox Git repository
I.e. create an account for GitHub

2 Once you have set up Git, get a local copy of the sandbox
$ cd <some local directory>
$ git clone ssh://git@github.com/staerz/sandbox.git

$ cd sandbox

3 Apply Git commands as they are introduced in this tutorial, modifying
files, adding new files, fixing typos in the BrothersGrimm.txt, ...
$ git status -uno
$ git checkout -b yourdevbranch
$ git add newfile
$ git commit -m "Fancy message"
$ git push -u origin yourdevbranch

Remember the Git Cheat Sheet and print a personal copy of it!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 46

https://github.com
https://staerz.web.cern.ch/slides/GitCheatSheet.txt

Part II: Git Rebase

The rebasing problem

Git Rebase: The rebasing problem

git merge vs. git rebase

Disclaimer: It’s done ”wrong” in so many places!
Let’s settle a long argument and misconception!a

aFor git there is no right or wrong.

A seamless work flow without any merge conflicts ever, guaranteed
When do you merge?

When a development on a branch is finished, you merge (that branch)
to master.

By design, there cannot be any merge conflicts if your branch started
from master and there is no intermediate modification to master

What’s next?
Pick up the next development and work on it, i.e. create a branch
(from the ”new” master) and work until it’s ready to merge.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 48

Git Rebase: The rebasing problem

git merge vs. git rebase 2

Source of merge conflicts when merging
Merge conflicts appear when a file modification is incompatible with
another modification in a parallel branch and manifest at the time a
merge of these parallel branches is attempted.
⇒ Git cannot solve that automatically, manual user intervention is needed.

Source of merge conflicts when rebasing
Merge conflicts appear when a file modification is incompatible with
another modification in the branch rebased to and manifest at the time a
rebase of the branch is attempted.

Same reason!
⇒ There is no difference between merge and rebase here: If there is a

conflict, it must be solved manually.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 49

Git Rebase: The rebasing problem

git merge vs. git rebase 3

So why to prefer rebasing?
Parallel developments are supposed to be independent, hence
interchangeable (which branch is merged first shouldn’t matter).
Dependant developments anyway need to be done sequentially.

⇒ Keep your history clean and easy to parse for a human.
Isolate different steps of development!
⇒ Keep it easy to track down any potential issue brought into the code.

Repo history with git merge Repo history with git rebase

git log can parse anything - but can you!?

Steffen Stärz (McGill) Git Tutorial 16 May 2023 50

Git Rebase: The rebasing problem

That’s what the tutorial said - the git rebase pitfall
Working on devbranch and master was updated in the meantime:
How to include these updates into devbranch?
b) Rebasing branches git rebase

$ git checkout devbranch: switch to devbranch (possibly
currently active)

$ git rebase master: replay devbranch onto updated master

Attention: that’s the shortlist of git commands, see later ...

General idea: Keep developments independent!
⇒ While working on devbranch, any changes to other branches are

”invisible”: Nobody affects your (local) branch
⇒ If important update pops in, include it at convenience
⇒ Avoid merging with other parallel dev branches (keep topology simple!)
⇒ Rebase onto master to sequentialise developments (Git will handle

conflicts in any case)
Steffen Stärz (McGill) Git Tutorial 16 May 2023 51

https://git-scm.com/docs/git-rebase

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf

2 The remote repository
It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

To use it properly, it’s important to understand ...
1 Rebase intention (what rebase does and intends to do)

Keep the history clean and linear
Avoid (or spot) dependencies early

2 What the remote repository (remote branches) and the local repository
(local branches) really are

1 In pictures: repo → plant (tree), branch → branch, commit → leaf
2 The remote repository

It’s the plant in the store, it’s not for sale and a gardener takes care of it.
The plant has a root (initial commit), a stem (master) and other branches.
Taking photos of the plant and taking them home is allowed at any time.

3 The local repository
It’s the home recreation (clone) of that plant based on that photo
At home, any modification (commits) to the plant is allowed: growing new
leafs on a branch, growing new branches, transplanting branches, cutting
(= deleting) branches and leafs, really anything, even killing the plant

4 Linking them together
The plant will grow in the store. Go there to take a new photo: git fetch
The plant at home grows, tell the gardener about it: git push
Details apply (see next slides)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 52

Git Rebase: The rebasing problem

An example git history: remote vs. local
Th

e
re

m
ot

e
re

po
sit

or
y

Th
e

lo
ca

lr
ep

os
ito

ry

Note the git colouring scheme for references: git log
The local repository contains local (green) and remote (red) references
Exception: local HEAD is always cyan - no link with origin/HEAD!

Be reminded: ”Remote references” are not necessarily the actual remote
references but only those as of the last photo you took

Steffen Stärz (McGill) Git Tutorial 16 May 2023 53

https://git-scm.com/docs/git-log

Git Rebase: The rebasing problem

An example git history: remote vs. local
Th

e
lo

ca
lr

ep
os

ito
ry

Note the git colouring scheme for references: git log

The local repository contains local (green) and remote (red) references
Exception: local HEAD is always cyan - no link with origin/HEAD!

Be reminded: ”Remote references” are not necessarily the actual remote
references but only those as of the last photo you took

Steffen Stärz (McGill) Git Tutorial 16 May 2023 53

https://git-scm.com/docs/git-log

Git Rebase: The rebasing problem

An example git history: remote vs. local
Th

e
lo

ca
lr

ep
os

ito
ry

Note the git colouring scheme for references: git log

The local repository contains local (green) and remote (red) references
Exception: local HEAD is always cyan - no link with origin/HEAD!

Be reminded: ”Remote references” are not necessarily the actual remote
references but only those as of the last photo you took

Steffen Stärz (McGill) Git Tutorial 16 May 2023 53

https://git-scm.com/docs/git-log

Git Rebase: The rebasing problem

An example git history: Updating remote references
Th

e
lo

ca
lr

ep
os

ito
ry

1 Take a new photo: git fetch

2 See history again: gitlog
Note the updates:

origin/master and origin/HEAD have ”disappeared”
We come back to this later ...

Steffen Stärz (McGill) Git Tutorial 16 May 2023 54

Git Rebase: The rebasing problem

An example git history: Updating remote references
Th

e
lo

ca
lr

ep
os

ito
ry

1 Take a new photo: git fetch

2 See history again: gitlog
Note the updates:

origin/master and origin/HEAD have ”disappeared”
We come back to this later ...

Steffen Stärz (McGill) Git Tutorial 16 May 2023 54

Git Rebase: The rebasing problem

Working with git - in pictures

When working on the local repository, work is done on the plant at home.
1 Creating a branch (from master) and doing some commits on it

From the upper tip of the plant (that was seen on the photo to be
master), a new branch with new leafs (commits) is started.
⇒ All the git add, git commit, git log are done on the plant at home

2 Pushing back to remote
Memorise the new grown branch (with its root) of the plant at home and
go back to the store, asking the gardener to also grow that branch there.
The gardener doesn’t blindly do what is asked (git push)
X He does accept entirely new branches (new names)
X He does accept new leafs on top of branches that he has already
7 He doesn’t accept new leafs on protected branches (e.g. master)
7 He doesn’t accept modified leafs (which are not extensions), instead he

proposes to grow a hybrid branch at home and come back later (git pull)
For the last, it can be made an order (git push -f)

He replaces his branch in the store with it (with all its leafs and root)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 55

Git Rebase: The rebasing problem

Working with git - in pictures

When working on the local repository, work is done on the plant at home.
1 Creating a branch (from master) and doing some commits on it

From the upper tip of the plant (that was seen on the photo to be
master), a new branch with new leafs (commits) is started.
⇒ All the git add, git commit, git log are done on the plant at home

2 Pushing back to remote
Memorise the new grown branch (with its root) of the plant at home and
go back to the store, asking the gardener to also grow that branch there.

The gardener doesn’t blindly do what is asked (git push)
X He does accept entirely new branches (new names)
X He does accept new leafs on top of branches that he has already
7 He doesn’t accept new leafs on protected branches (e.g. master)
7 He doesn’t accept modified leafs (which are not extensions), instead he

proposes to grow a hybrid branch at home and come back later (git pull)
For the last, it can be made an order (git push -f)

He replaces his branch in the store with it (with all its leafs and root)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 55

Git Rebase: The rebasing problem

Working with git - in pictures

When working on the local repository, work is done on the plant at home.
1 Creating a branch (from master) and doing some commits on it

From the upper tip of the plant (that was seen on the photo to be
master), a new branch with new leafs (commits) is started.
⇒ All the git add, git commit, git log are done on the plant at home

2 Pushing back to remote
Memorise the new grown branch (with its root) of the plant at home and
go back to the store, asking the gardener to also grow that branch there.
The gardener doesn’t blindly do what is asked (git push)
X He does accept entirely new branches (new names)
X He does accept new leafs on top of branches that he has already
7 He doesn’t accept new leafs on protected branches3 (e.g. master)
7 He doesn’t accept modified leafs (which are not extensions), instead he

proposes to grow a hybrid branch at home and come back later (git pull)

For the last, it can be made an order (git push -f)
He replaces his branch in the store with it (with all its leafs and root)

3depending the repo setting, a push may be privileged to (a few) maintainers or entirely forbidden
Steffen Stärz (McGill) Git Tutorial 16 May 2023 55

Git Rebase: The rebasing problem

Working with git - in pictures

When working on the local repository, work is done on the plant at home.
1 Creating a branch (from master) and doing some commits on it

From the upper tip of the plant (that was seen on the photo to be
master), a new branch with new leafs (commits) is started.
⇒ All the git add, git commit, git log are done on the plant at home

2 Pushing back to remote
Memorise the new grown branch (with its root) of the plant at home and
go back to the store, asking the gardener to also grow that branch there.
The gardener doesn’t blindly do what is asked (git push)
X He does accept entirely new branches (new names)
X He does accept new leafs on top of branches that he has already
7 He doesn’t accept new leafs on protected branches3 (e.g. master)
7 He doesn’t accept modified leafs (which are not extensions), instead he

proposes to grow a hybrid branch at home and come back later (git pull)
For the last, it can be made an order (git push -f)

He replaces his branch in the store with it (with all its leafs and root)
3depending the repo setting, a push may be privileged to (a few) maintainers or entirely forbidden

Steffen Stärz (McGill) Git Tutorial 16 May 2023 55

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home
Note the updated history again: now also the local master has disappeared

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master
Again, note the updated history: remote and local master have re-appeared

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)

4 A git push -f will force the gardener to discard his branch and
re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

An example git history: The git rebase in action
So when it comes to a git rebase, what you do is

1 git fetch origin master:master: take a new photo of the
plant in the shop to know what the current tip is (might be the same as
on the previous photo) and apply this new master to the plant at home

2 git rebase master: Now cut off the local branch from its initial
root with all its leafs and transplant it on top of the new master

Now the critical part is to properly talk to the gardener
3 A simple git push is rejected: although the branch and leafs look

the same, it has a different root (and different commit SHAs)
4 A git push -f will force the gardener to discard his branch and

re-grow your branch

The same applies for any actions that involve git rebase in any kind:
As soon as ”history is changed” forcing the gardener to accept it
(git push -f) is required!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 56

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

And did all those commits and "git push"ed them

(l
o
ca

lly
)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did some more commits ...
that would bring you into merge hell

if you tried to "git rebase" again ...

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did some more commits ...
that would bring you into merge hell

if you tried to "git rebase" again ...
Since the updated master is here

And did all those commits and "git push"ed them

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did some more commits ...
that would bring you into merge hell

if you tried to "git rebase" again ...
Since the updated master is here

And did all those commits and "git push"ed them

Until here, everything
was correct!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did some more commits ...
that would bring you into merge hell

if you tried to "git rebase" again ...
Since the updated master is here

And did all those commits and "git push"ed them

Until here, everything
was correct!

At this point
you should have just
done a "git push -f"

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

The common git rebase pitfall: some git history

You originally started here

Some branches were
merged in the meantime

Here you did a "git rebase master"
to "re-attach" your branch
to the new master locally

A
n
d
 y

o
u
r

o
ld

 c
o
m

m
it

s
w

e
re

 c
o
p
ie

d
 t

o
 t

h
e
 n

e
w

 r
o
o
t

You then did a new commit
and tried "git push"

But a "git push" here is rejected.
So you decided to do a "git pull" first (as suggested).

And you solved merge conflicts!
Then you "git push"ed again.

And did some more commits ...
that would bring you into merge hell

if you tried to "git rebase" again ...
Since the updated master is here

And did all those commits and "git push"ed them

Until here, everything
was correct!

At this point
you should have just
done a "git push -f"

This merge commit
will always get you!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 57

Git Rebase: The rebasing problem

How to solve the pitfall once trapped
There’s not only ”the one option”, but the general idea (being on your
local ”affected branch”) is (to create a backup branch and then):

1 Reset your branch to the one commit right before merging the remote
and local branch (”set figures width to 16cm” in the example)

git reset --hard <commit>

2 Pick up (/transplant) the actual later commits
git cherry-pick <commit> (for single commits)
or git rebase --onto ... (for longer branches)

3 Force the remote to accept your new version of the branch
git push -f

4 Double-check that the result looks like expected in the graph view
using the GitLab web interface

So that got rid of the older branch (the yellow one in the example), but is
not yet fully rebased onto master. Now you can (see as before):

1 git fetch origin master:master
2 git rebase master
3 git push -f

Steffen Stärz (McGill) Git Tutorial 16 May 2023 58

Git Rebase: The rebasing problem

How to solve the pitfall once trapped
There’s not only ”the one option”, but the general idea (being on your
local ”affected branch”) is (to create a backup branch and then):

1 Reset your branch to the one commit right before merging the remote
and local branch (”set figures width to 16cm” in the example)

git reset --hard <commit>
2 Pick up (/transplant) the actual later commits

git cherry-pick <commit> (for single commits)
or git rebase --onto ... (for longer branches)

3 Force the remote to accept your new version of the branch
git push -f

4 Double-check that the result looks like expected in the graph view
using the GitLab web interface

So that got rid of the older branch (the yellow one in the example), but is
not yet fully rebased onto master. Now you can (see as before):

1 git fetch origin master:master
2 git rebase master
3 git push -f

Steffen Stärz (McGill) Git Tutorial 16 May 2023 58

Git Rebase: The rebasing problem

How to solve the pitfall once trapped
There’s not only ”the one option”, but the general idea (being on your
local ”affected branch”) is (to create a backup branch and then):

1 Reset your branch to the one commit right before merging the remote
and local branch (”set figures width to 16cm” in the example)

git reset --hard <commit>
2 Pick up (/transplant) the actual later commits

git cherry-pick <commit> (for single commits)
or git rebase --onto ... (for longer branches)

3 Force the remote to accept your new version of the branch
git push -f

4 Double-check that the result looks like expected in the graph view
using the GitLab web interface

So that got rid of the older branch (the yellow one in the example), but is
not yet fully rebased onto master. Now you can (see as before):

1 git fetch origin master:master
2 git rebase master
3 git push -f

Steffen Stärz (McGill) Git Tutorial 16 May 2023 58

Git Rebase: The rebasing problem

How to solve the pitfall once trapped
There’s not only ”the one option”, but the general idea (being on your
local ”affected branch”) is (to create a backup branch and then):

1 Reset your branch to the one commit right before merging the remote
and local branch (”set figures width to 16cm” in the example)

git reset --hard <commit>
2 Pick up (/transplant) the actual later commits

git cherry-pick <commit> (for single commits)
or git rebase --onto ... (for longer branches)

3 Force the remote to accept your new version of the branch
git push -f

4 Double-check that the result looks like expected in the graph view
using the GitLab web interface

So that got rid of the older branch (the yellow one in the example), but is
not yet fully rebased onto master. Now you can (see as before):

1 git fetch origin master:master
2 git rebase master
3 git push -f

Steffen Stärz (McGill) Git Tutorial 16 May 2023 58

Git Rebase: The rebasing problem

How to solve the pitfall once trapped
There’s not only ”the one option”, but the general idea (being on your
local ”affected branch”) is (to create a backup branch and then):

1 Reset your branch to the one commit right before merging the remote
and local branch (”set figures width to 16cm” in the example)

git reset --hard <commit>
2 Pick up (/transplant) the actual later commits

git cherry-pick <commit> (for single commits)
or git rebase --onto ... (for longer branches)

3 Force the remote to accept your new version of the branch
git push -f

4 Double-check that the result looks like expected in the graph view
using the GitLab web interface

So that got rid of the older branch (the yellow one in the example), but is
not yet fully rebased onto master. Now you can (see as before):

1 git fetch origin master:master
2 git rebase master
3 git push -f

Steffen Stärz (McGill) Git Tutorial 16 May 2023 58

Git Rebase: The rebasing problem

So once fixed
It should now look like that:

Note that:
If you (or someone) rebased via the web interface, your local branch will
be behind and you need to update it (rebasing your local history):

1 git pull -r (and not just git pull!)
This is a pull with rebase: In case you have new local commits, they will be
rebased on top of the new remote branch

Without that, you run into the same git pull (merge) issue again

Steffen Stärz (McGill) Git Tutorial 16 May 2023 59

Git Rebase: The rebasing problem

So once fixed
It should now look like that:

Note that:
If you (or someone) rebased via the web interface, your local branch will
be behind and you need to update it (rebasing your local history):

1 git pull -r (and not just git pull!)
This is a pull with rebase: In case you have new local commits, they will be
rebased on top of the new remote branch

Without that, you run into the same git pull (merge) issue again
Steffen Stärz (McGill) Git Tutorial 16 May 2023 59

More git rebase features

Git Rebase: Git rebase features

Interactive rebase
Interactive rebasing is a powerful tool to alter the commit history and can:

Reword the commit message
Edit the commit (split, add files)
Squash (meld into/combine) with other commit
Drop (remove) commits
Reorder the commit history

Note the difference to rebase: A ”simple” rebase re-applies all the commits
to a different root while an interactive rebase can change the entire history.

Syntax: git rebase -i <reference>

<reference> is any valid git reference, e.g. a tag, a branch, a
commit or a relative reference like HEAD˜3

Attention: Never attempt to rebase commits that have already been
merged into master (never go prior to/beyond master)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 61

Git Rebase: Git rebase features

Interactive rebase
Interactive rebasing is a powerful tool to alter the commit history and can:

Reword the commit message
Edit the commit (split, add files)
Squash (meld into/combine) with other commit
Drop (remove) commits
Reorder the commit history

Note the difference to rebase: A ”simple” rebase re-applies all the commits
to a different root while an interactive rebase can change the entire history.

Syntax: git rebase -i <reference>

<reference> is any valid git reference, e.g. a tag, a branch, a
commit or a relative reference like HEAD˜3

Attention: Never attempt to rebase commits that have already been
merged into master (never go prior to/beyond master)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 61

Git Rebase: Git rebase features

Interactive rebase
Interactive rebasing is a powerful tool to alter the commit history and can:

Reword the commit message
Edit the commit (split, add files)
Squash (meld into/combine) with other commit
Drop (remove) commits
Reorder the commit history

Note the difference to rebase: A ”simple” rebase re-applies all the commits
to a different root while an interactive rebase can change the entire history.

Syntax: git rebase -i <reference>

<reference> is any valid git reference, e.g. a tag, a branch, a
commit or a relative reference like HEAD˜3

Attention: Never attempt to rebase commits that have already been
merged into master (never go prior to/beyond master)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 61

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

Let’s separate out the pdf file into a dedicated commit after ’adding
separation ...’ (reference: 12483d5)

1 git rebase -i 12483d5˜1
* there are far simpler alternative ways in that case: git commit --amend

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

Let’s separate out the pdf file into a dedicated commit after ’adding
separation ...’ (reference: 12483d5)

1 git rebase -i 12483d5˜1
* there are far simpler alternative ways in that case: git commit --amend

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

3 Alter the line of the commit from pick to edit, save and exit

Note that git will open the editor that you configured - here it’s simply vim

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

4 Notice the git output

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

5 Reset the now top commit by git reset HEAD˜

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

6 Add files individually and commit step by step

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

7 Continue rebasing by git rebase --continue

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: an example
Split a commit (which is not the most recent one*) into two

8 Conclude by pushing your changes (git push -f)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 62

Git Rebase: Git rebase features

Interactive rebase: another example

Squash multiple sections of the history

Similar procedure as for splitting:
1 git rebase -i <reference>

e.g. git rebase -i HEAD˜10* (most recent 10 commits)
or git rebase -i master (all commits since master)

2 Select squash (allows to alter commit message) or fixup (meld with
previous commit and use its commit message) for commits to be
combined

3 Follow instructions on terminal:
Rebase without problem as long as order is kept
Conflicts may emerge when reordering dependent commits. Solve as usual
and git rebase --continue, or abort by git rebase --abort

4 git push -f to conclude

* Attention, pit fall: Make sure not to go beyond master. If it happens though, run
git rebase master right after the interactive rebase to remove duplicate commits.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 63

Git Rebase: Git rebase features

Rebase: general remarks

A matter of habit
It’s a matter of practice!
Clean commits ease rebasing
Use squashing for fairly long history and cleaning up commit messages

A matter of work flow (and repo settings)
Before merging, branches could require rebase to master by default
Maintainers can request developers to do the rebasing of their branches

There is always an alternative
There is almost always another way to achieve the same goal with git.
Once you understand what’s going on, chose your preferred way.

Steffen Stärz (McGill) Git Tutorial 16 May 2023 64

Git Rebase: Git rebase features

Merge conflict assistance: Use Meld!
During a rebase you might run into a merge conflict.
Fixing conflicts via a simple text editor can be tedious and error-prone.

Can also be your difftool!
Steffen Stärz (McGill) Git Tutorial 16 May 2023 65

https://meldmerge.org/

Git Rebase: Git rebase features

Summary Part II: Git Rebase

Git rebase changes the history
git rebase ... ”transplants” branches to a new root commit (e.g.
on a newer commit on master)
A regular git push will be rejected (if the branch was pushed before
with its old root)
Use a git push -f to force the update
Be vigilant in comparing remote and local histories
Use git fetch to notice remote updates
Be ready to also update your local branch if the remote was rebased

Change your habits
A git pull (that implies git merge) is the native enemy of
git rebase: use git fetch instead to see first, then
git pull -r to sync with remote

Steffen Stärz (McGill) Git Tutorial 16 May 2023 66

Part III: Beyond Git:
GitLab/GitHub/...

Beyond Git: GitLab/GitHub/...

Issue-based work flow

Disclaimer: GitLab/GitHub constantly being developed!
Here only basic features are mentioned as a starting point for your own
further investigation:
there’s too much to cover here and things may easily change

Issues and merge requests (pull requests)
Make use of the issue-based work flow!

1 Create an issue: Be brief, but as verbose as necessary in the issue
description to explain what needs to be done and what the context is
(possibly fill in a provided template)

2 Title the issue solution oriented (”This is broken” is a bad example)
3 Work on related branch and push regularly
4 Possibly incorporate any feedback from a review
5 Merge via merge (pull) request (which closes issue and deletes branch)

Steffen Stärz (McGill) Git Tutorial 16 May 2023 68

Beyond Git: GitLab/GitHub/...

Documentation: Markdown files (*.md)

Documentation is always underrated and underestimated

Guideline of good documentation
A README.md is always rendered directly when found in a directory
Document purpose of the repository and its context
Introduce content of repo and its functions (overview...)
Point to details where appropriate
Do not duplicate information
Ideally your code documentation is already in the code (use doxygen,
sphinx, ...)

If you don’t like Markdown, use something else to document your
code/repo, but document it!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 69

https://www.doxygen.nl/
https://www.sphinx-doc.org/en/master/

Beyond Git: GitLab/GitHub/...

CODEOWNERS

When working in a project with others:

CODEOWNERS for collaborative work
CODEOWNERS are used to identify users that are responsible for certain
files in a Git repository.

Owner(s) per file, directory, or wildcards
⇒ Code owners should be defined for a project with clear responsibilities
⇒ Can affect required approval of merge request / pull request (”Don’t

touch my code without my knowledge”)
⇒ Improves code quality

Steffen Stärz (McGill) Git Tutorial 16 May 2023 70

https://docs.gitlab.com/ee/user/project/code_owners.html

Beyond Git: GitLab/GitHub/...

CI/CD4: Pipelines and jobs
Pipelines are meant to automate as much as possible the work flow and
assure a constantly high quality of the code base (repository).

They can be used to do anything as long as it can be scripted, e.g.:
Run code syntax checks (spelling, style, ...)
Compile and run some code (→ unit tests)
Deploy software somewhere
Produce documentation (latex, doxygen, ...)
Automate repetitive tasks on the repository itself (merging, tagging,
cleanup, etc.)

Setting up a CI/CD for a project is a task of its own, just a few notes:
Pipelines are usually triggered for each single commit pushed
Pipeline jobs can be tied to conditions → quickly getting complex

4CI: Continuous Integration, CD: Continuous Deployment
Steffen Stärz (McGill) Git Tutorial 16 May 2023 71

Beyond Git: GitLab/GitHub/...

Summary Part III: Beyond Git: GitLab/GitHub/...

Use provided features to improve the project and simplify your work flow
Use the issue-based work flow to keep track of your development!
Document your code and repository!
Code Owners allow to identify responsible experts
Pipelines (CI/CD) assure quality and automate otherwise tedious tasks

Steffen Stärz (McGill) Git Tutorial 16 May 2023 72

Finally: The last slide

You made it!

X Git Basics
X Git Rebase
X Beyond Git: GitLab/GitHub/...

Thanks for your attention!
Your feedback is welcome at any time!
Questions?

Good Luck!

Steffen Stärz (McGill) Git Tutorial 16 May 2023 73

	Git Basics
	Concept
	Novice
	Beginner
	Competent
	Expert

	Git Rebase
	The rebasing problem
	Git rebase features

	Beyond Git: GitLab/GitHub/...
	

