
STEADY 2023 Workshop Series
Command Line Interface (CLI) and tools for scientific

computing
David Gallacher
PhD Candidate - McGill University

david.gallacher@mail.mcgill.ca
May 15th, 2023

About Me
● Completed Undergrad in Honours Experimental Physics from Carleton University

(2019)
○ Bachelors Thesis project on measuring Cherenkov Radiation from DEAP-3600 Acrylic

● Completed Master’s Degree in Particle Physics from Carleton University (2021)
○ Master’s Thesis project was on building a small-scale R&D liquid argon direct dark matter detector using

Silicon Photomulitpliers for readout (Argon-1) for ARGO
● PhD Candidate at McGill University working on nEXO photodetector R&D and the

Light-only-liquid Xenon detector (LoLX)
○ Main research focus is on light readout from LXe detectors, signal analysis, and studying background

rejection techniques for future LXe detectors
● Checkout my personal website for my full CV and information on research!

www.davidgallacherphysics.com
● Member of MGAPS since Summer 2022, VP Finance and RTech Officer

○ Worked on grad student lounge revamp, stipend salary increase and
STEADY + more

● Physics Department Outreach Coordinator - Organizer of the 2022 Physics
Hackathon

2

http://www.davidgallacherphysics.com

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

3

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

4

What is Linux?

- Collection of Open Source Unix-like Operating Systems
- Linux → Linux Is Not UNIX

- Unix Filesystem
- Everything is a file (Everything)

- Every file has a place. You don’t have to put it there, but you should.

- Large library of software tools

- A shell scripting environment
- Navigate the file system

- Combine the software tools to accomplish complex tasks

Linux

5

What is Linux?

- Collection of open source unix-like operating systems
- Linux → Linux Is Not UNIX

- Software Library

- Kernel

- UNIX Filesystem

Linux Distribution (Ubuntu, Fedora, Debian, Arch,...)

 Linux Developer: Linus Torvalds

6

Why you should use Linux?

1. It's free and open source!
a. Many flavours (distributions) to choose from, almost all of them are free.
b. Ubuntu - Good all around option with long-term support options, CentOS/RHL for scientific

computing, Lubuntu - Lightweight Ubuntu version, great for bringing old PC’s to life

2. When it works, it works!
a. Can be left running for months/years without any issues.
b. No need to reboot after installing software!

3. Runs on any hardware
a. Can run full-scale desktop Linux options or ultra-lightweight Linux for single-board-computers

(SBCs) like Raspberry PI

7

The Most Useful Linux Troubleshooting Advice

First check “commandName –h” or --h or --help (Varies by
program)

Next do “man commandName”, if you can’t find the information
you need move on

Google:
Error Message/file + [Linux Distribution Name]

Check out the top 2-3 results, see what they agree on.

8

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

9

Tutorial 1: Navigating the Filesystem

1. Open Terminal (Mac) or Ctrl + Alt +T (Windows/Ubuntu)
a. It may look like nothing, but it can do almost everything.

2. Check out your home folder

ls
(Lists the contents of your home folder)

ls -a
(Includes “hidden” files, i.e., files whose name starts with ‘.’)

(Files and Directories will probably be coloured differently)

10

Tutorial 1: Navigating the Filesystem

1. Move into a new directory (e.g.eieioo)
cd eieioo

Current folder

11

Username

Machine name

Tutorial 1: Navigating the Filesystem

1. Move into a new directory (e.g. eieioo)
cd eieioo

2. Is there anything there?
ls
(maybe not)
ls -a
(you will notice ‘.’ and ‘..’)

3. What does .. mean?
cd ..

4. pwd (print working directory)

Linux Shorthand:

. → Current Directory

.. → Parent Director

~ → Home Folder (Also
called $HOME)

12

Tutorial 1: Navigating the Filesystem
1. Try using an absolute file path

cd /home/[username]/eieioo

2. You can use ~ as a shortcut for your home folder
cd ~/eieioo

Let’s start playing around with files:

1. Copy a file into your Documents folder (commands are equivalent)
absolute paths: cp /home/[username]/.bashrc /home/[username]/Documents/
relative paths: cp ../.bashrc ./

2. You can copy a file to a new filename
cp ~/.bashrc ./dummyfile

13

Tutorial 1: Navigating the Filesystem
1. Make a new directory:

mkdir dummydir

2. Move your dummyfile into dummydir:
mv dummyfile dummydir

3. Check that is worked:
ls dummyfile
(should return ls: cannot access 'dummyfile': No such file or directory)

ls dummyfolder/dummyfile
(should not give an error)

14

Tutorial 1: Navigating the Filesystem

Let’s make a sample Python file with nano (also check out vim and emacs).

1. Open your file (notice the .py ending): nano test.py

2. Add some lines

print(‘Hello STEADY!’)

3. To save and exit:

a. Ctrl+x - To exit

b. Then type “y” to save changes (“n” to not save”)

4. Run your python file: python test.py
15

Tutorial 1: Navigating the Filesystem

Let’s clean up after ourselves

1. rm ./.bashrc
(deletes the .bashrc file we copied into Documents)

2. rm -r dummydir
(recursively deletes anything inside dummydir and then deletes dummydir)

16

Tutorial 1: Navigating the Filesystem
Summary of Commands:

1. ls lists contents of current directory
2. ls /path/to/dir lists contents of a specific directory
3. cd /path/to/dir changes current directory
4. cp copies files
5. mv moves/renames files/directories
6. mkdir makes directory
7. rm deletes files/directories

Specific options for all of these commands can be found using the --help flag

More detailed instructions can be found using man (e.g., try man ls or man echo)

17

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

18

Tutorial 2: File Permissions
Lets have a look at the root folder again:
ls -l /

19

What is all this stuff?

Tutorial 2: The Linux Filesystem

The first character tells you what type of file: - (regular file), d (directory), l (link)

20

Tutorial 2: File Permissions

Owner
Group

Everyone Else

The next nine characters gives you three different sets of “permissions” for the file
○ Three different levels of control over the file

r = Reading Permitted
w = Writing Permitted
x = Executing Permitted

21

Tutorial 2: File Permissions

Number of links/directories inside a link/directory

22

Tutorial 2: File Permissions

Owner of the file

You can modify who owns a file with: chown [username] [filename]

23

Tutorial 2: File Permissions

Group that owns the file

You can add users to a group using: usermod -aG [groupname] [username] (or chgrp -options GROUP FILE)

24

Tutorial 2: File Permissions

Size of the file in bytes. Try using ls -lh for human-0readable sizes.

25

Tutorial 2: File Permissions

Date of last modification

26

Tutorial 2: File Permissions

Filename

27

Tutorial 2: File Permissions
Ok so we have seen how to give ourselves ownership (chown) or group
membership (usermod -aG).

What about everyone else? Can we modify the owner/group permissions?

chmod u=rwx,g=rx,o=r [filename]

u = user = owner

g = group

o = other = everyone else

Everyone can read, write, and execute: chmod 777 <filename>
28

Tutorial 2: File Permissions
Ok so we have seen how to give
ourselves ownership (chown) or group
membership (usermod -aG).

What about everyone else? Can we
modify the owner/group permissions?

chmod u=rwx,g=rx,o=r [filename]

u = user = owner

g = group

o = other = everyone else

Different Permutations:

29

Tutorial 2: File Permissions

The dangerous but useful: chmod 777 <filename>

Everyone can read, write, and execute this file.

30

Exercise 2: File Permissions

1. Change one of your sample Python files permissions so that you get the
following error when you try to run it:

python: can't open file 'test.py': [Errno 13] Permission denied

2. Figure out how to successfully run it again

31

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

32

Tutorial 3: The Builtin Software Library

1. Let’s find where python is:
whereis python
For me, there are multiple python versions installed.

2. cd /usr/lib/python3

Let’s check out the Python versions installed here.

33

Tutorial 3: The Builtin Software Library

1. Lets see how many python files there are
find . -name '*.py'

Look ‘here’ for files whose name matches the pattern *.py (*=wildcard)
(Ok, that’s a lot of files!)

2. grep -r --include '*.py' '= list()'

Recurse down the filesystem, looking inside files that end with .py searching
for ‘= list()’

34

Tutorial 3: The Builtin Software Library

1. Now to count them up
grep -r --include '*.py' '= list()' | wc -l

The character | “pipes” the output of grep into wc which counts the number of
words it is (or in this case lines due to -l)

2. Ok now lets try to repeat that with my_list = []
grep -r --include '*.py' '= []' | wc -l

You will get an error:
The ‘[]’ characters are special and must be “escaped”
grep -r --include '*.py' '= \[\]' | wc -l

35

Tutorial 3: The Builtin Software Library

Great!

So how many instances did you find?

More generally, grep is extremely useful for finding strings (or a RegExp) in text files
when you can’t remember which file it’s in.

Also, very useful - piping outputs into grep.

For example:

Ifconfig - Returns a long list of all your network interfaces. (‘ip a’ instead on some linux
systems)

Ifconfig | grep “inet” - “|” is for “piping” the output of the left-hand side, as input into the
right-hand side (Read more here), “inet” is your IP address

36

https://www.geeksforgeeks.org/piping-in-unix-or-linux/

Tutorial 3: The Builtin Software Library

Some commands I commonly use:

find: find files
grep: search for strings/patterns inside text files
top or htop (fancy version): similar to task manager
df -h: check how much free disk space is available on your system
du -h : Check how much space is used in the current directory

Tip: Google “How to do <blank> command line linux”

37

Exercise 3: The Builtin Software Library

Determine how many times ‘import’ is used in your
Python3 installation. For me, it’s 18!

38

Lastly, what about a job I need to quit?

Ok now we started a rogue process which will never finish and will eat up our hard
drive. What do we do?

Use the pid to kill the process!

kill 25879

If you do not remember the pid, use jobs -l to find the jobs currently running in a
given shell.

Check for tasks+PIDs running on your computer with ps -aux , to search for a
specific task, pipe to grep! ps -aux | grep “taskname”

39

Shell Scripting

40

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

41

What is the shell?

We’ve been working in the ‘terminal’ or
‘command-line interface’ these are examples
of shell programs.

Shell programs take keyboard inputs and turn
them into instructions for the computer

Examples include: Mac Terminal, Windows
PowerShell, Linux Terminals

Different Shell types are around: bash
(Bourne again shell), csh (C-Shell), zsh
(Z-shell, default on Mac)

42

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

43

Tutorial 1: Shell Profiles

You may have noticed that my shell has
colour highlighting and other quality of
life features

Your shell has default options that you
can configure.

Take a look at your shell profile~

Nano ~/.bashrc

nano ~/.bash_profile

Or on Mac

nano ~/.zprofile or nano ~/.zshrc

44

Tutorial 1: Shell Profiles
Interactive shells (What happens when you open the terminal) call ~/.bashrc before starting

This is a useful place to set any variables we may want to use in CLI, as well as calling any scripts we may want to run before starting
a CLI session

Let’s do an example, open your terminal and call:

nano ~/.bashrc

We will add a new variable and a print statement.

Add the following lines:

 MYVAR=”Hello STEADY!” - this sets a variable within the bashrc script, which can be called later on

export MYVAR - Tells the shell to remember this variable, now we can call it from the CLI, this is now an “environment
variable”

echo $MYVAR - “echo” prints the argument to the command line, this will print the contents of MYVAR

Exit and save (Ctrl+x then ‘y’)

45

Tutorial 1: Shell Profiles

Now we need to re-load the ~/.bashrc script, we can either do that by opening
a new terminal or by resourcing the script

source ~/.bashrc

We should see our print statement with the variable contents

Next let's print the statement from the terminal to check if it was exported
properly

echo $MYVAR - Print the contents of this environment variable!

Lastly we can assign “aliases” to commands, so that we can invoke them
later-on. Very handy for long commands you don’t want to type out!

See here for details on making aliases.

46

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

47

Tutorial 2: Shell Scripts

We just saw our first example of a shell script, a set of
command-line instructions we can call from a script instead of
manually

This opens lots of doors for us!

Shell scripts typically end in “.sh” can can be called like:

bash myscript.sh

Or sh myscript.sh

Or ./myscript.sh - This option requires some additional steps!

48

Tutorial 2: Shell Scripts

Let’s make a shell script and test it out

From the terminal do:

nano myscript.sh

Let’s add the following lines

#This script creates a variable and prints it! - Comments in Shell scripts are prepended with ‘#’

var=100 - Make a variable called var, and set it to 100 (Careful here, ‘var = 100’ returns an error!)

echo $newvar

Save the script and run it with bash myscript.sh

49

Tutorial 2: Shell Scripts

Now we will expand the test script to do more things

We can call programs and other commands from the shell script.

Anything you can do in the command line interface, you can do in a shell
script!

50

Tutorial 2: Shell Scripts
We can pass arguments to our scripts as well

Bash supports up to 9 arguments directly from the
command line

Let’s modify our script, add the following lines:

echo $1 - This prints the first command-line
argument, similarly, $0-$9 print any other arguments.

$0 is reserved for the script name (myscript.sh)

Save and exit, and then call the script, this time
passing an argument:

bash myscript.sh “Hello STEADY”

Our script so far!

51

Tutorial 2: Shell Scripts

Lastly, we will call python from our shell script and save the output to a variable
that gets printed in a formatted message

Add the following lines to your script:

pythonVersion=$(python –version)

printf “The python version currently installed is : %s \n” “$pythonVerison”

Then we can save the file and call it again, this time we call it directly:

./myscript.sh “Hello STEADY”

52

Tutorial 2: Shell Scripts

… Then we can save the file and call it again, this time we call it directly:

./myscript.sh “Hello STEADY”

This will return an error! We need to set the file permissions to make this script “executable”, and we need to tell the
shell what scripting language to use.

First, add this line to the very start of your script:

#!/usr/bin/env bash -This is called “shebang” and tells the computer which interpreter to use to understand the
instructions in the rest of the file, here we’re using bash

Now we need to make it executable:

chmod u+=x myscript.sh

Now we should be able to call it directly!

./myscript.sh

53

Tutorial 2: Shell Scripts

Lots of options for automating tasks in shell scripts:

Some examples that I’ve used in physics before:

● Script that analyzes data using a python script then sends the output to another script
● Create a for-loop in the bash script to process many data files and rename their outputs

and sync to cloud
● Script that runs continuously in the background and looks for new data files being written,

then analyzes them automatically
● Much more..

Lots of power in shell scripts for making your life easier!

Google is your best friend, if you’re thinking of automating a task try searching “do `task` in bash
script”

54

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

55

Tutorial 3: SSH - The secure shell

SSH or “Secure Shell” is a network communication protocol. It allows you to obtain
a virtual terminal or “shell” from a remote machine.

Using SSH you can connect to a machine with an SSH-server and run
command-line-interface instructions over the network

Widely used in physics for connecting to computing clusters, remote workstations,
experimental equipment etc..

SSH is an encrypted network protocol, all traffic is encrypted and secure!

56

Tutorial 3: SSH - The secure shell

SSH works in two parts, a client and a server

A client runs on your PC and communicates with an
SSH server running on the remote machine over the
network

This can be done directly in a Mac/Linux Terminal, on
Windows in Powershell or by using a GUI for SSH like
Putty

Example:

ssh -Y username@remote-address.com

Remote addresses can be IP addresses or domain
names!

57

mailto:username@remote-address.com

Tutorial 3: SSH - The secure shell

SSH requires you to log in to the target
machine, this can be done in 2 ways

1. Password authentication
a. You enter the password for the user you are

trying to obtain a shell from
b. Susceptible to attacks! Password

authentication left open on a public IP can be
a serious security flaw

2. Key-exchange
a. You copy your “public” key to the server,

which it uses to verify connections later
b. For an in-depth overview of key-exchange

see this great video!

58

https://www.youtube.com/watch?v=NmM9HA2MQGI

Tutorial 3:

Now we will make an ssh public key, copy it to a remote server and establish a
connection

Let’s first check if a key exists by running in the terminal:

ls -la ~/.ssh/

I already have two keys, “id_rsa” (private and public) and “test-key”
59

Tutorial 3: SSH - The secure shell

Let’s make a new key:

ssh-keygen -t rsa -b 4096 -f “~/.ssh/my_new_key”

This will prompt you for a password for your key, you can leave it blank (Hit enter)
or make a password. Some servers require you to have password protected ssh
keys!

You will see a random-art image representing your new key

FilenameEncryption type
Size of key

60

Tutorial 3: SSH - The secure shell

Now that we have created an ssh key, we can connect to a remote server without password authentication

But first the server needs to know our key!

Two ways of doing this:

1. For some systems that have password authentication + key exchange options
● ssh-copyid -i “~/.ssh/my_new_key.pub” steadyer@steady.physics.mcgill.ca - copies our public

key to the server to store, need passwords!
2. Other systems will require you to send your plaintext public key (Contents of

~/.ssh/my_new_key.pub) to the system administrators to store manually. No password access to the
server.

Lots of power to simplify things, including using the SSH config file, see here for more information on
setting up your own configurations.

61

https://linuxize.com/post/using-the-ssh-config-file/

Tutorial 3: SSH - The secure shell

What if we need to copy files that we made on a remote machine to a local machine?

Here are two options:

‘scp’ - ‘Secure copy’, copy data from a remote location to local, or vice-versa, is encrypted by default
● Can specify address and port for transfer
● Example to copy from remote to a local directory, through port ‘2205’ on remote host

○ scp -P 2205 username@remote_host:/path/to/file/to/copy /path/to/local/directory/to/store
● Example to copy a local file to a remote directory, through port ‘2205’ on remote host

○ scp -P 2205 /path/to/local/file/to/copy/file.txt username@remote_host:/path/to/remote/directory/to/store

‘rsync’ - “Remote Sync”, tool for copying files, or synchronizing a remote directory to a local one
● Faster than scp, but not encrypted by default (Can encrypt with an ssh tunnel)
● Example to sync two directories between remote and local

○ rsync -artzP username@remote_host:/home/username/dir1 /place/to/sync/on/local/machine

Google and GNU/Linux manual pages are your best friends when using command-line tools!

62

Tutorial 3: SSH - The secure shell

Lots of doors open with ssh connections

● Running remote commands on other PCs
● Connecting to remote instruments to control (Raspberry Pi’s and other SBC’s

are ideal for this!)
● Connect to computing clusters to perform large scale computing tasks (Such

as the Digital Research Alliance clusters, formerly Compute Canada)
● Access a computer on your home network from the office, or vice-versa, to

work remotely

63

Tutorial 3: SSH - Exercise

Take one of our test files and copy it to the STEADY machine

1. Choose which file to copy
2. Use ‘scp’ to copy the file over ssh to steadyer@steady.physics.mcgill.ca
3. Login to steadyer@steady.physics.mcgill.ca via ssh
4. Create your own directory with your first initial and last name
5. Move file into directory and log-out

64

mailto:steadyer@steady.physics.mcgill.ca

Workshop Closing Remarks

Command-line interface tools are powerful and plentiful!

Making use of existing tools, and doing some research on what’s possible before starting a project or a
new task can make your life much easier! Less time spent on software wrangling = More time for science

Google and online manuals are your best friends for learning, and talk to your colleagues and
collaborators about the tools they like best!

A word of caution, be very careful copying and pasting commands from online forums, malicious actors
exist and a seemingly benign looking set of commands can become a serious security issue!

Check multiple sources before running commands from the internet! If you’re unsure, reach out to
colleagues for help.

Always think before you ‘sudo’

65

See you in the fall at the
McGill Physics Hackathon?

66

https://www.hackathon.physics.mcgill.ca/
https://www.hackathon.physics.mcgill.ca/

Questions?
You can also email me after at david.gallacher@mail.mcgill.ca

67

Resources

● How to install git on any OS
● A nice ELI5 git series
● "What is git" from Atlassian
● Basic git tutorial
● Reference for adding local git projects to the cloud
● An in-depth summary of remote branches
● Tutorial on how to deal with merge conflicts
● SSH Beginner Guide
● Piping in Linux
● Docker Getting Started

68

https://www.atlassian.com/git/tutorials/install-git
https://hackernoon.com/understanding-git-fcffd87c15a3
https://www.atlassian.com/git/tutorials/what-is-git
https://git-scm.com/docs/gittutorial
https://www.softwarelab.it/2018/10/12/adding-an-existing-project-to-github-using-the-command-line/
https://git-scm.com/book/en/v2/Git-Branching-Remote-Branches
https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://betterprogramming.pub/learn-to-ssh-go-to-guide-9d525eb83f15
https://www.geeksforgeeks.org/piping-in-unix-or-linux/
https://docs.docker.com/get-started/

Containers

69

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

70

What is a container?

Containers are software development
tools that are growing in usage in
scientific research

Containers package together the
application with the required libraries
and dependencies to run on any
operating system or hardware

Similar to virtual machines (VMs) but
differ in important ways

Image from Docker (link)

71

https://www.docker.com/resources/what-container/

Container vs VM

VM’s are instances of operating systems that run
separate from the main OS on the hardware

For example, you can run a Windows VM on a Mac
in order to run Windows specific software

VM’s are large (Several GB’s) and contain
everything required for an operating system to work

Containers are lightweight (MB’s) and contain only
what’s required for a specific application to run.

Containers run like applications on the host OS and
virtualize resources

Images from Docker (link) 72

https://www.docker.com/resources/what-container/

Containers for Scientific Computing

Containers have a lot of value in scientific computing, here are some common
considerations for scientific software

● Research often uses custom software packages where scientists are developers
● Creating cross-platform reliable software with idiosyncratic differences from different

compiler versions, hardware and OS’s is a challenge
● Usability is a major consideration for scientific software, we need tools that will work

reliably with minimal upkeep, so we can spend our time doing science instead of
solving software related bugs

● Reproducibility, Some simulation software (GEANT4 or ROOT for example) will
have different implementations of physics, depending on what version you use! So
we need to specify exact versions for use in order to reproduce our results

Containers can address all of these points!

73

Workshop Outline
Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Shell Scripting

● What is a shell?
● Tutorial 1: Your shell profile
● Tutorial 2: Using shell scripts
● Tutorial 3: ssh

Part 3: Containers (Time Permitting)

● What is a container?
● Tutorial 1: Using a container

74

Tutorial 1: Using a container

The most popular container engine is Docker

We will use this for the tutorial, you can download docker
here: https://www.docker.com/get-started/

We will follow the sample tutorial here (link)

This will also allow us to test out our command-line
interface techniques

75

https://www.docker.com/get-started/
https://github.com/docker/labs/blob/master/beginner/chapters/setup.md

Tutorial 1: Using a container
To run our first container, we simply type:

docker run hello-world

76

Tutorial 1: Using a container
To run our first container, we simply type:

docker run hello-world

Since we didnʼt have “hello-world” image installed,
docker downloaded it for us before running as a
container

77

Tutorial 1: Using a container
Now we will install another container from Docker’s repository
of containers (See here for more containers)

docker pull alpine

Then we can see all the images we’ve installed from docker

docker images

78

https://hub.docker.com/search?image_filter=official&q=&type=image

Tutorial 1: Using a container
Now we will install another container from Docker’s repository
of containers (See here for more containers)

docker pull alpine

Then we can see all the images we’ve installed from docker

docker images

79

https://hub.docker.com/search?image_filter=official&q=&type=image

Tutorial 1: Using a container

Alpine is a lightweight linux distro, available as a docker
container

 We can use alpine + docker to run linux command-line
instructions

docker run alpine ls -l

When we call “run” we’re telling docker to create the container
for the “alpine” image that we pulled earlier, and issue the
command ‘ls -l’

80

Tutorial 1: Using a container
We can also use and “interactive” flag to keep the
container running after issuing the command, try:

docker run -it alpine /bin/sh

Then run:

echo “Hello McDonald Institute”

We can exit with “exit” or CRTL+C

81

Tutorial 1: Using a container

Lastly, let’s check our tasks to see if any containers are running:

docker ps

You should see an empty line, since none of the containers we
started were running as “Daemons”, which tells the container to
run continuously in the background

To see what containers we’ve run recently, we can append an -a
or “all”

docker ps -a

82

Tutorial 1: Using a container

We’ve used some phrases without explaining in detail, here are
some definitions (Copied from here)

● Images - The file system and configuration of our application, which are used to create containers.
To find out more about a Docker image, run docker inspect alpine. In the demo above, you used the
docker pull command to download the alpine image. When you executed the command docker run
hello-world, it also did a docker pull behind the scenes to download the hello-world image

● Containers - Running instances of Docker images — containers run the actual applications. A
container includes an application and all of its dependencies. It shares the kernel with other
containers, and runs as an isolated process in user space on the host OS. You created a container
using docker run which you did using the alpine image that you downloaded. A list of running
containers can be seen using the docker ps command.

● Docker daemon - The background service running on the host that manages building, running and
distributing Docker containers.

● Docker client - The command line tool that allows the user to interact with the Docker daemon.

● Docker Store - A registry of Docker images, where you can find trusted and enterprise ready
containers, plugins, and Docker editions.

83

https://github.com/docker/labs/blob/master/beginner/chapters/alpine.md
https://store.docker.com/

Containers Closing Remarks

Containers are very useful tools for running specific
applications/custom software on arbitrary systems

Loads of applications (Especially web-apps) available as
containers

Scientific software (Custom simulation packages, version
dependent effects etc..) are fertile ground for containers

Some further steps:

● Make your own image to learn more about Docker (link)
● Look for an image of a software you’re considering using

84

https://www.stereolabs.com/docs/docker/creating-your-image/

Tutorial extra: Networked Computing

Open a secure connection to a shell instance on a remote machine:

ssh [username]@[remote machine]

e.g., lmacka3@mimi.cs.mcgill.ca (register here)

[Do what you need to do on the remote machine]

Close the shell:

exit

85

https://newuser.cs.mcgill.ca/

Tutorial extra: Networked Computing - Copying Files

You may need some of your files on remote machine. Use scp [source] [target]!

Lets make a dummy file: touch ~/foo

Copy the file to a remote machine:

scp ~/foo lmacka3@mimi.cs.mcgill.ca:/home/cnd/lmacka3

You may need to use ssh to figure out the remote path you are copying to.

You can also use rsync to transfer only new files

86

https://www.tecmint.com/sync-new-changed-modified-files-rsync-linux/

Demonstration extra: Networked Computing - Copying Files

I will now share my terminal to
demonstrate copying some files on
Compute Canada’s Beluga.

87

Workshop Outline

Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Understand how to use git

● What is git?
● Tutorial 1: Set up your first git repository
● Tutorial 2: Make a branch
● Tutorial 3: Check out an old version of your code

88

What is Git?

● Git is what is known a Version Control System (VCS)

● By using git, you can keep track of what changed in a coding project, when it
changed, who changed it, and why (if you’re keeping good commit
messages!)

● Particularly useful in collaborative projects, where multiple people are making
changes at once. If anything in your changes conflicts (known as “merge
conflicts”), changes can be made (sort of) gracefully

● In some ways, git is like a philosophy of how collaboration in code should be
done

89

GitHub: working collaboratively online

● GitHub is an online service for hosting projects managed with git online

● Expands on the branching of git with useful collaborative features

○ Issues

○ Pull requests

○ Wikis, projects, ...

IssuesPull requests (PRs)

90

Note: GitHub != git!

● Very common misunderstanding
● git is the original VCS code, and doesn’t have online hosting on its own
● GitHub is an online cloud hosting service with extra features for git projects

91

Workshop Outline

Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Understand how to use git

● What is git?
● Tutorial 1: Set up your first git repository
● Tutorial 2: Make a branch
● Tutorial 3: Check out an old version of your code

92

Tutorial 1: Making a repository

● Hopefully everyone’s made a GitHub account to follow along with this tutorial
-- if you haven’t, you can quickly to follow along!

93

Follow the instructions to create a repository (don’t worry about any of the extra
features for now).

Now we want to git clone the repository we just made on to our local
machines (wherever we’d like!) 94

Tutorial 1: Making a repository (Summary)

● We can clone (git clone) GitHub repos to our local machine, which will copy
over all the git history from the online project (./git folder!)

○ Note: this makes a remote branch called origin which is attached to the cloud, this can be a
confusing detail if you accidentally make a local branch and then try and merge it into origin

● We can also create a git repository locally (git init), which creates a ./git folder
locally. We can then push to GitHub later

○ IMO, this workflow is confusing, and I recommend starting all personal coding projects with
repositories on GitHub

95

Important basic git commands

● git --help
○ Gives a helpful list of git commands! Can also do `git {command} --help` for specifics on

commands
● git config --global user.name “{username}”
● git config --global user.email {email}

○ Note: these are git associated names/emails, so they don’t have much to do with GitHub! Just
useful for identifying yourself in local git projects

● git status
○ Shows you current changes

● git log
○ Shows you the commit history for your project

● git fetch
○ Updates information stored in the local ./git folder, such as new remote branches

96

Making our first commit

● The most basic git workflow consists of three important steps:

a. Use `git add {file}` to “add” a new file, or to “add” changes to an already existing file

■ You can use “wildcard” operators with this! E.g. `git add .*py` to add .py file changes

b. Once you’re happy with your additions, use `git commit -m “{useful message}”` to add a
commit with a helpful commit message explaining your changes

c. Finally, we need to push our changes to the cloud. We’ll do this with the command
`git push origin master`

■ Note that the origin here specifies the remote cloud, and master is the branch we’re
committing to. By default, GitHub repos start with only a master branch

97

Pulling from remote

● To pull in any changes from collaborators, just use `git pull` in the relevant
directory

○ This won’t do anything for us now, since we just made this repo for ourselves... But it’s VERY
important to pull the most recent version of the repository before you start making changes!

○ Ideally if everyone was working on their own branches and being responsible about workflow,
this wouldn’t be an issue... But nobody’s perfect :)

98

Summary

● Step 0: PULL changes that might have been made by collaborators

● Step 1: ADD our changes

● Step 2: COMMIT changes with a message (-m)

● Step 3: PUSH changes to the cloud

● NOTE: all the while we can check the STATUS of our additions!

99

Exercise 1:

1. Create a GitHub repository on your account
2. Move the files from EIEIOO_Scripts to the cloned repository and make your

first commit.
3. Then change test2.py to print “One day Github will save me from the coding

monsters”.
4. Push your changes to GitHub

100

Workshop Outline

Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Understand how to use git

● What is git?
● Tutorial 1: Set up your first git repository
● Tutorial 2: Make a branch
● Tutorial 3: Check out an old version of your code

101

Tutorial 2: Make a Git branch

Start with
some
original
version of
the code
base

You want to code a new
feature in the code without
breaking the stable code
base, so you make your own
branch!

Others can
write features
in tandem!

Merge your
changes into
the master
branch once
they’re stable!

102

Making our own branch

● We can take a look at the available branches with `git branch`

○ Can do `git branch -r` for remote branches, `git branch -a` for all branches

● Make our own branch with `git branch {branch name}`

103

● NOTE: `git branch {branch name}` only makes a branch locally! Later, we’ll
see how to get this branch on GitHub

● The branch command only made the branch. Now if we want to checkout to
our new branch -- i.e. move to the space where we’ll make our changes

○ `git checkout {branch name}`

○ NOTE: we can checkout to a new branch in one command! `git checkout -b {new branch}`

● Now we can safely make our changes without interfering in the stable master
branch!

● Once we’ve ADDED and COMMITTED our changes, we can PUSH!

○ NOTE: we have to do `git push --set-upstream origin {our branch}` -- this is because our
branch has only been local, until now: we’re making our branch sync with the cloud with
--set-upstream

104

Merging in changes from other branches

● Usually a good practice to compare differences between branches first

○ `git diff {one-branch} {other-branch}` to compare

● Now, say we’re working on our own feature branch, and there are some
useful changes on another part of the code base in origin/master we want on
our branch

○ First: `git pull` to update your local branches with changes from the cloud (origin)

○ Next: `git merge {other-branch}` to put those changes in your current branch!

105

Merging in relevant changes from the
master branch that might be useful for
our testing (note: conflicts could arise!)

106

Exercise 2: Make your own branch

Create and push a new branch to your online GitHub repository for
EIEIOO_Scripts. Call the branch “trying_new_things”.

107

Making a pull request

● When you’re working in a collaboration, and you’re ready to incorporate your
changes into the master branch, you can make a pull request!

108

● Pull requests are a super useful way of keeping major code changes organized

● Rule of thumb: master branch should ALWAYS be deployable

○ This is why pull requests exist: typically if you’re a part of a collaboration, there will be other people
working on the code base with you. Usually there’ll be one/a few people who manage most of a
given repository, and making a pull request allows you to give them a chance to view your code,
review it, suggest changes, and then finally accept the merge into master once it’s deemed ready

● Workflow goes something like

○ Propose a new feature

○ Checkout a new branch to start working on your feature (make sure nobody interferes with your work
so you don’t get merge conflicts)

○ Keep pushing changes to your branch until things are stable/finished, then make a pull request

109

Dealing with merge conflicts

● Despite best efforts to keep organized,
issues will arise!

● Merge conflicts are the part of git that
will, at some point in your coding life,
make you scream at your computer

● We can fix these problems pretty easily,
in fact! Try not to resort to saving your
changes locally, and re-downloading the
whole repo

110

Workshop Outline

Part 1: Learn the basics of the command line (CLI)

● What is Linux?
● Tutorial 1: Navigating the Filesystem
● Tutorial 2: File Permissions
● Tutorial 3: The Builtin Software Library

Part 2: Understand how to use git

● What is git?
● Tutorial 1: Set up your first git repository
● Tutorial 2: Make a branch
● Tutorial 3 (Final): Checkout an old version of your code

111

Going back to an old commit when your new code breaks!

● You can get a log of all previous commits with
○ `git log`

● This should return your previous commits along with their corresponding
hash, e.g.,

● You can revert to a previous commit with
○ `git checkout <commit hash> . `

112

The important parts of a merge conflict will show up in our conflicted files:

● <<<<<<< HEAD
● =======
● >>>>>>> new_branch_to_merge_later

Think of the “=======” as the conflict divider. The content between HEAD and the
divider is our content, and the content between the divider and the
new_branch_to_merge_later is the content we tried to merge in. By reconciling the
differences on these lines of code in a text editor, once you’re happy with the
outcome, you can add/commit/push as usual!

113

Final Exercise

Restore your local EIEIOO_Scripts to its original commit before you
modified the file.

Great job on all the tutorials today!

114

