PyROOT in the Lab J

Jean-Francois Caron

Queen’s University

May 12, 2020

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 1/21

What is PyROOT?

PyROOT is a bridge allowing you to call C+4+ ROOT functions from a
python program. It is automatically generated from the ROOT source
code, so the classes and functions are all equivalent.

Pros Cons

o Few new interfaces to learn. @ Python-side performance can be

@ High-performance with built-in bad.
ROOT objects. @ Need to code-switch between

o Flexibility and scope of Python Python and C++.
language and standard library. @ More libraries to install.

@ Can add-in 3rd-party numerical @ Sometimes need workarounds for
python libraries. ROOT weirdness.

My strategy: use compiled C++ code with ROOT libraries for heavy
number-crunching, but use PyROOT for exploration, interactive use, and
plotting.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 2/21

Your Primary Tool: TGraph

The ROOT TGraph is a basic 2D graph of X vs Y.

python3 -i demo_tgraph.py
import ROOT, array

x
y

= array.array("d",range (10)) # "d" for double-precision floating-point.
= array.array("d",[0]xlen(x))# array of ten zeros.

for i,xi in enumerate(x):

y[il = xi**2

g = ROOT.TGraph(len(x),x,y)
g.Draw ("AL")

.python.org/3/library/array.html Python array module
.cern.ch/doc/master/classTGraph.html TGraph Documentation
.cern.ch/doc/master/classTGraphPainter.html TGraph Draw Options
.cern.ch/doc/master/classTMath.html TMath Documentation

Numpy arrays can also be used instead of array.array.

You can also create an empty roor.terapnany and fill the points in one by one
using g.SetPoint(i,a,b).

Exercises (3 minutes):

@ Try plotting roor.masm.sin OF your favourite function.

e Try g.GetXaxis().SetTitle("foo'") and g.SetTitle("bar").

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 3/21

Histograms: TH1D

Histograms are frequently used in particle physics. In ROOT they play a
more central role than even TGraphs. You create them with a certain range
of bins and fill them with values.

import ROOT
rng = ROOT.TRandom3 (1234)
h = ROOT.THiD("h","Histogram Title", 10, 0, 10)
for i in range (500):
value = rng.Gaus(5,1)

h.Fill(value)
h.Draw()

The TH1D class is full-featured: you can set variable bin widths, fill with
different weights, change bin statistics, interface to fitting, etc.

Note: there is no reason to use the other TH1* types.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 4/21

Reading Files 0: Fake Data

So you can make graphs, but how do you get the data from a file into the

program? First, let's generate an example text file to work with.

python3 demo_generate_data.py
import ROOT, csv

outfilename = "demo_data_file.csv"

n_lines = 10000

random_seed = 1337 # Fixed seed for reproducibility

rng = ROOT.TRandom3 (random_seed) # Random number generator object

t, tau = 0, 6500 # Average time interval for simulated Poisson process.
outfile = open(outfilename,"w” # "write" mode.

outfile.write("# Generated using ROOT.TRandom3 with seed %d\r\n" % random_seed)
outfile.write ("# tau = %d\r\n" % tau)

outfile.write ("# time, binomial, gaussian\r\n")

writer = csv.writer(outfile)

for i in range(n_lines):

t += rng.Exp(tau) # Exponential distribution with tau
var2 = rng.Binomia1(20,0.2) # 20 trials, 0.2 chance of success
var3 = rng.Gaus(O,l) # central value 0, width 1

writer.writerow ([t,var2,var3])
outfile.close ()

References

https://root.cern.ch/doc/master/classTRandom3.html
https://docs.python.org/3/library/csv.html

Exercise (1 minute): Examine the output file with « and 1ess.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

5/21

Reading Files 1: Manually Filling a TTree

import RO0T, array, csv

infilename = '"demo_data_file.csv"
outfilename infilename.replace(".csv",".root")
treename = infilename.replace(".csv","")

outfile = ROOT.TFile(outfilename ,"RECREATE") # Erases any existing file.

Create a one-element python array to hold the value (could also use numpy).

time_arr = array.array("d",[0])

binomial_arr = array.array("1",[0]) # And so on for every variable...
Create the tree and the branch manually.

t = ROOT.TTree(treename,'"tree title')

t.Branch("time", time_arr, "time/D") # D for doubles
t.Branch("binomial", binomial_arr, "binomial/L") # L for integers

Now loop over the file manually:
with open(infilename,'"r") as csvfile:
reader = csv.reader (csvfile)
for row in reader:
if row[0].startswith("#"): # skip comment lines
continue

time_arr [0] = float (row[0]) # Important: change the CONTENT of the arrays.

binomial_arr[0] = int(row[1])
t.Fill()

Write the data from the TFile to the actual file on disk.
outfile.Write ()
outfile.Close ()

Reference: https://root.cern.ch/how/how-write-ttree-python
https://docs.python.org/3/1library/array.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

6/21

Reading Files 2: TTree.ReadFile

python3 demo2_ttree_readfile.py
import ROOT

infilename = "demo_data_file.csv"
outfilename = infilename.replace(".csv",".root")
treename = infilename.replace(".csv'","") # CGive the tree the same name as the file.

Create the ROOT TFile.
outfile = ROOT.TFile(outfilename ,"RECREATE") # Erases any existing file.

Create the tree. TTrees are automatically added to the current TFile, if any.
t = ROOT.TTree(treename,treename)

Define branches of a TTree

The syntax is branchname/typecode:branchname/typecode...

branches = "time/D:binomial/L:gaussian/D" # L for integers, D for floats

t.ReadFile(infilename ,branches)

Write the data from the TFile to the actual file on disk.

outfile.Write ()

outfile.Close ()

References:

https://root.cern.ch/doc/master/classTFile.html

https://root.cern.ch/doc/master/classTTree.html#a9c8dalfbc68221b31c21e55bddf72ce”

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

7/21

Working with T Trees

Exercise (5 minutes): enter these commands interactively in python.

python3 -i demo7_work_trees.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")

Check the contents of the file
infile.1ls ()

Get the tree out of the file
tree = infile.Get("demo_data_file")
NOTE: a failed "Get" returns <ROOT.TObject object at 0x(nil)>

Show the contents of the Oth entry and number of entries
tree.Show (0)

N = tree.GetEntries ()

print (N)

Shows a summary of the contents of the whole tree.
tree.Print ()

You can also get the list of branches programmatically:
for b in tree.GetListOfBranches():
print ("branch:",b.GetName ())

Once "got", each branch can be accessed as a data member of the tree.
for i in range(5):

tree.GetEntry (i)

print (tree.time,tree.gaussian)

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

8/21

Making Plots

python3 -i demo8_ttree_draw.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.Draw("binomial") # ROOT has an algorithm to guess decent histogram boundaries.
htemp = ROOT.gROOT.FindObject("htemp") # Temporary histograms are called "htemp"

NOTE: a failed FindObject returns <ROOT.TObject object at Ox(nil)>

hi = htemp.Clone("h1") # Clone to make sure it doesn’t get deleted.

input ("Press Enter to continue.")

You can give your histogram an explicit name and binning:
tree.Draw("binomial >> h2(10,0,15)")

h2 = ROOT.gROOT.FindObject ("h2") # Bring "h2" over to the python side.
input ("Press Enter to continue.")

tree.Draw("gaussian:time") # Unbinned 2D scatter plot TGraphs are made with y:x
gl = ROOT.gROOT.FindObject ("Graph").Clone("gl") # Temporary is called "Graph'

NOTE: if you use the >>name notation, it instead makes a BINNED TH2x!

gl.Draw ("AP") # Remember to draw the clone before working on it further.
gl.SetTitle ("Noise™)

References:
https://root.cern.ch/doc/master/classTTree.html#a73450649dc6e54b5b94516c468523e45

Exercise (3 minutes):

© Draw a histogram or graph of a quantity of your choosing, with proper
axis labels.
PyROOT in the Lab May 12, 2020 9/21

Saving and Exporting

To properly save figures, you need to save the TCanvas, not the TGraph or
TH1. The active canvas can be saved with ROOT.gPad.SaveAs ("foo.pdf") OF!

python3 -i demo9_saving.py
import ROOT

infilename = "demo_data_file.root"

infile = ROOT.TFile(infilename,"READ")

treename = infilename.replace(".root","")

tree = infile.Get(treename)

Create a TCanvas. New canvases are automatically set to the active one.

cl = ROOT.TCanvas("c1")

Draw your thing.
tree.Draw("gaussian:time")
cl.SaveAs("plots/demo9_binomial.
cl.SaveAs("plots/demo9_binomial.
cl.SaveAs("plots/demo9_binomial.
cl.SaveAs("plots/demo9_binomial.

Exercise (2 minutes):
© Save the figure from the last exercise in the four formats shown.
@ Try to view the ouput files (as text or as figures)
(evincs for pdf, eog for png).
© Look at the size difference in the output files with 15 -1n pross.
PyROOT in the Lab May 12, 2020 10/21

Aside: The Power of PyROOT

You can add all sorts of functionality in Python. Here is a function | made to

automatically timestamp and move a file. | use it before saving figures.

def ArchiveExisting(fname):
"""This function takes a filename (relative or absolute) and checks to see

if such a file already exists. If it doesn’t, nothing is done. If a file already

exists, then it moves the existing file into a directory "old" in the same final
directory as the file, and appends a timestamp to the filename of the moved file.

If "old" does not exist, it is created."""
import os, datetime
if not os.path.exists(fname):

return
head,tail = os.path.split(fname)
olddir = os.path.join(head,"old")
if not os.path.exists(olddir):

os.mkdir (olddir)
elif not os.path.isdir(olddir):

raise RuntimeError ("leed to create directory "+

olddir+" but file already exists with that name")

timestamp = datetime.datetime.now().strftime ("_%Y%midjH%MYLS")

barename ,ext = os.path.splitext(tail)

archivename = os.path.join(olddir,barename+timestamp+ext)
os.rename (fname ,archivename)

return

You could write this in C++ too, but in Python it's way easier!

Homework: Use the python documentation to figure out exactly how this works.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

11/21

Advanced Drawing

python3 -i demo9b_advanced_drawing.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.GetEntry (0)

t0 = tree.time

drawstring = "TMath::Power(time/(1.0*Entry$)-500,2):((time-%g)/1e3)" % t0O
tree.Draw(drawstring)

gl = ROOT.gROOT.FindObject ("Graph").Clone("gi")

gl.Draw ("ALP")

gl.SetMaximum (2500) # Setting the range in Y is different than in X.
gl.SetMinimum (0)

gl.GetXaxis ().SetRangeUser(0,1000) # "User' coordinates means in the graph units.

Arbitrary C++-style expressions are allowed with the names in the TTree.

The C++ ternary operator (A ? B : C) is available, so you can do anything!

Special names are also available: Entry$, Entries$, Sum$, etc.

Also functions from ROOT.TMath:: and the C++ std::cmath modules. NOTE: "::"

Reference: https://root.cern.ch/doc/master/classTFormula.html
https://root.cern.ch/root/htm1524/TMath.html
https://www.cplusplus.com/reference/cmath/

https://root.cern.ch/doc/master/classTTree.html#a73450649dc6e54b5b94516c468523e45

https://root.cern.ch/root/htmldoc/guides/users-guide/R00TUsersGuide .html Sec. 9.3.3

R T T

This method can take you surprisingly far, and it’s very fast because the looping
happens outside of Python.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 12 /21

Stacking Histograms

python3 -i demolO_stacks.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

cl = ROOT.TCanvas ()

tree.Draw("gaussian >> hi")

hi = ROOT.gROOT.FindObject ("hi")
tree.Draw("gaussian/(1.0*binomial) >> h2")
h2 = ROOT.gROOT.FindObject ("h2")
h2.SetLineColor (ROOT.kRed)

hs = ROOT.THStack("hs","THStack")

hs.Add (h1)

hs.Add (h2)

hs.Draw("NOSTACK") # Default draw stacks ’em vertically

2D coordinates go X1,Y1,X2,Y2, (0,0) is at bottom left
NDC means Normalized Device Coordinates

t1 = ROOT.TLegend(0.6,0.6,0.9,0.9, "Header Text","NDC")
t1.AddEntry(hl,"Gaussian")

t1.AddEntry(h2,"Gaus/Binom")

tl.Draw ()

Reference:
https://root.cern.ch/doc/master/classTHStack.html
https://root.cern.ch/doc/master/classTLegend.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

13 /21

Stacking Graphs

python3 -i demoll_stacks.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

cl = ROOT.TCanvas ()

tree.Draw("gaussian:time")

gl = ROOT.gROOT.FindObject ("Graph").Clone("gl")
tree.Draw("gaussian/binomial:time")

g2 = ROOT.gROOT.FindObject ("Graph").Clone("g2")
g2.SetLineColor (ROOT.kRed)

mg = ROOT.TMultiGraph('mg","TMultiGraph")
mg.Add (g1)

mg.Add (g2)

mg.Draw ("AL") # Don’t need NOSTACK

2D coordinates go X1,Y1,X2,Y2, (0,0) is at bottom left
tl = ROOT.TLegend(0.6,0.1,0.9,0.3,"","NDC")
tl.AddEntry(gl,"Gaussian")

t1.AddEntry(g2,"Gaus/Binom")

t1l.Draw()

Reference:
https://root.cern.ch/doc/master/classTMultiGraph.html
https://root.cern.ch/doc/master/classTLegend.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020

14 /21

Error Bars

Use TGraphErrors, TGraphAsymmErrors, etc.

python3 -i demol2_errors.py
import RO0T, array

x = array.array("d",range (10))

y = array.array("d",[0, 1, 4, 9, 16, 25, 36, 49, 64, 81])

x_errors = ROOT.nullptr # Use ROOT.nullptr where you’d otherwise send 0 or NULL.
y_errors = array.array("d",[0]*len(y))

for i,yi in enumerate(y):
y_errors[i] = ROOT.TMath.Sqrt(yi)

g = ROOT.TGraphErrors(len(x), x, y, x_errors, y_errors)
g.Draw ("AP")

Reference: https://root.cern.ch/doc/master/classTGraphErrors.htn
https://root.cern.ch/doc/master/classTGraphA r

Unfortunately you cannot create TGraphErrors directly with TTree.Draw.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 15 /21

Aside: The Power of PyROOT 2

import numbers, array, ROOT

def get_error(e,N):
if e is None:
error = ROOT.nullptr
elif isinstance(e, numbers.Number):

error = array.array(’d’,[elx*N)
else:

assert len(e) == N

error = array.array(’d’,e)

return error

def AddErrors(g,ex = None,ey = Nome):

"""Takes a TGraph and turns it into a TGraphErrors

fixed or array errors.
N = g.GetN()

xbuf = g.GetX() # Returns a "read-write buffer" which

xbuf.SetSize (N) # So we have to tell it what size
x = array.array(’d’,xbuf)

ybuf = g.GetY()

ybuf.SetSize (N)

y = array.array(’d’,ybuf)

xerror = get_error (ex,N)
yerror = get_error (ey,N)

ge = ROOT.TGraphErrors(N,x,y,xerror,yerror)

ge.SetlName (g.GetName ()+" _e")
return ge

J.-F. Caron (Queen's University) PyROOT in the Lab

a dumb array.

May 12, 2020

16 /21

Basic Fitting 1

ROOT has too many ways to fit things. This is just one way.

python3 -i demol3_fit.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.Draw("gaussian >> hi")
hi = ROOT.gROOT.FindObject ("hi™)

ftr_p = hi1.Fit("gaus","S") # gaus, expo, pol0O, poll...polll are shortcuts.
Fit normally returns an empty TFitResultPtr, option "S" makes it Store the results.
ftr = ftr_p.Get() # You have to Get the TFitResult from the pointer. It’s dumb.

central_value = ftr.Parameter (1)
width = ftr.Parameter (2)

Reference:

https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTGraph.html#a61269bcd47a57296f0f1d57ceff8feeb
https://root.cern.ch/doc/master/classTGraph.html#aa978c8ee0162e6616ae795£f6£f3a35589

o3 o oA

Note the same process works for TGraphs.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 17 /21

Basic Fitting 2

You can define your own function with a TF1 or with a C++ function.

python3 -i demol4_fit2.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

¢l = ROOT.TCanvas ()

The first empty "" is a TCut string the second is a draw option.
tree.Draw("sin(time/1000.0):time/1000.0","","" ,100,0) # Draw 100 entries starting at 0.
gl = ROOT.gROOT.FindObject ("Graph").Clone("gl")

gl.Draw ("ALP")

input ("Press Enter to continue.") # Pause

£1 = ROOT.TF1("f1","[0l*sin(x/[1]1 + [2]) + [3]1",0,60) # Generic sine function.
f1.SetParNames ("scale","period","phase","offset") # Optional.
f1.SetParameters(1,1,0,0) # Set initial parameter guesses/

f1.Draw("same") # To see if our initial guess is close.

ftr_p = gl.Fit(£f1,"s")

Reference:

https://root.cern.ch/doc/master/classTF1.html
https://root.cern.ch/doc/master/classTGraph.html#a61269bcd47a57296f0f1d57ceff8feeb
https://root.cern.ch/doc/master/classTGraph.html#aa978c8ee0162e661leae795f6£f3a35589

o o oA

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 18/21

Neglected Topics

Q@ “Collection” objects in TTrees

@ 3D and higher plots, profile plots

© TDataFrame

@ "Out parameters”

@ Including your own compiled C++ ROOT code in PyROOT
Q@ TTree.Scan

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 19/21

Getting Help

© The ROOT forum is very active: https://root-forum.cern.ch/

© ROOT User's Guide: https://root.cern.ch/root/htmldoc/
guides/users-guide/RO0TUsersGuide.html

© ROOT Reference Guide: https://root.cern/doc/master/

@ PyROOT-specific tutorials:
https://root.cern/doc/master/group__tutorial__pyroot.html

© The FreeNode IRC channels #pyinon and scs+-vasic are helpful.
@ Python official documentation: https://docs.python.org/3/

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 20/21

https://root-forum.cern.ch/
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/doc/master/
https://root.cern/doc/master/group__tutorial__pyroot.html
https://docs.python.org/3/

Major Exercise/Homework

You will probably not finish (or start?) this during the workstop time.

© Generate a new data set (as on slide 5) with the binomial distribution for
N = 20, 200, and 2000 trials.

@ Convert this data set to a ROOT TFile with a TTree in it (as on slide 7).

© Plot the distributions in TH1Ds and put them together in a THStack
(as on slide 13).

@ Fit each of the distributions with a Gaussian function, note the Chi2/NDf
(as on slide 17).

© Save the produced plot in your favourite format (as on slide 10).

@ Bonus: put the fit results in a TPaveText on top of the THStack plot.

J.-F. Caron (Queen's University) PyROOT in the Lab May 12, 2020 21/21

