
Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

C++ : basic guidelines for beginners

Sumanta Pal,
Postdoctoral Fellow, Dept. of Physics, Univ. of Alberta

Email: sumanta@ualberta.ca

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Git download details
git clone https://github.com/palSumanta/sapcppexamples.git

If you do not have git installed, install it from your linux repository.
For debian it is : sudo apt-get install git

Then go to the sapcppexamples directory.

If you do not have gcc/g++, install that too.

2

https://github.com/palSumanta/sapcppexamples.git

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Language, Operating Systems, and Compilers
● The ‘processor’ is the brain of a computer. In a nutshell, it consists of a million of logic gates and

digital switches.
● Any processor comes with a set of instruction set (A set of binary numbers which will do switching

and mathematical operations plus other stuff in the processor), which is provided by the
manufacturer.

● Programming using the instruction set given for a processor is usually called ‘Assembly Level
Programming or Low Level Programming/Language’.
○ Mnemonic code -> Binary code -> check if the codes are right -> check if the program runs

properly.
● High Level Language, which is now used by a code developer, uses natural and understandable

expressions.
○ High level languages hide all the complexities involved in putting together the pieces in the

assembly language.

Continued …..

3

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Language, Operating Systems, and Compilers
● High Level Languages are classified into two types:

○ Compiled Languages :
■ There is an intermediate ‘converter’ called a compiler which converts the statements in a program into

binary instructions that the processor understands, apart from checking syntax errors.
■ C, C++ etc.

○ Interpreted languages :
■ Each statement in the code and then the corresponding instruction is converted and executed one after

the other.
■ Java, Python etc.

Continued …..

4

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Language, Operating Systems, and Compilers
● The Operating System is the manager of your computer.
● Linux is a family of open source Unix-like operating systems based on the Linux kernel, an

operating system kernel first released on September 17, 1991, by Linus Torvalds. It is
written in C and Assembly language [wikipedia link].

● It manages and controls the use of various resources in a computer.
● Linux Kernel : The Linux kernel is the main component of a Linux operating system (OS)

and is the core interface between a computer’s hardware and its processes. It communicates
between the two, managing resources as efficiently as possible.

● The kernel is so named because, like a seed inside a hard shell, it exists within the OS and
controls all the major functions of the hardware, whatever is our device : a phone, laptop,
server, or any other kind of computer.

Continued …..

5

https://en.wikipedia.org/wiki/Linux

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Language, Operating Systems, and Compilers
● List of Linux distributions (wikipedia link)

○ rpm based : RedHat, CentOS, Fedora etc.
○ debian based : Ubuntu etc.
○ 3rd party distribution : LinuxMint etc. [written based on Ubuntu’s LTS package, and is tailored to

user-friendliness for desktop users.

● I work in debian linux.
● Compiler : converts the statements of a program into a binary instructions that the

processor understands, apart from checking syntax errors and linking to other libraries.
● GCC/g++, the GNU Compiler Collection, is used extensively for C, C++ programmes.
● The command line interface in Linux is called ‘Terminal’, ‘Command Prompt’ in

Windows.

Contd …..

6

https://en.wikipedia.org/wiki/List_of_Linux_distributions
https://gcc.gnu.org/

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

A “Hello World” program
● $ gcc --version : shows gcc version
● $ gcc -v : shows its version with more details of its

configuration.
● My version is 7.5.0 which supports c++17 (released in

2019).
○ More recent versions, 9.3, 10.1 are released in 2020. Version 11.0 is

under development.
○ Choose latest version available through your linux OS package

manager.
● Use an editor to write the code and Save it after that.

○ emacs, gedit/text editor, vi/vim, nano etc. (consumes less computer
memory, command interface)

○ More professional editors nowadays : atom, eclipse, QtCreator etc.
(consumes more computer memory, GUI interface)

 Contd….

7

Terminal

Type your code in an editor : here it is ‘vi’

Compile the code : <compiler name> <main file
name .cpp> <executable file name>

Execute the code : ./<executable file name>

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

A “Hello World” program
#include <iostream> : input-output standard stream; This header file
(preprocessor directive) contains definitions to objects like cin, cout, cerr
etc. In any main program in C++ we need this header file.

8

namespace : provide a scope to identifiers inside it; we are not defining ‘cout, return, endl (alternate for “\n”)
in the current scope, which is the main function.

‘using namespace std’ says computer to know the code for the ‘cout, cin’ functionalities and in which
namespace they are defined.

If we do not define ‘namespace’ in the beginning, we can write this way: std::cout wherever it is needed . “::”
is called ‘Scope Resolution Operator’.

“;” is required at the end of every line to end the line. Otherwise, compiler will give error.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

‘Scope’ of a variable

In general, the scope is defined as the extent up to which something can be worked with. In programming, the
scope of a variable is defined as the extent of the program code within which the variable can we accessed or
declared or worked with.

There are mainly two types of variable scopes: local variables and global variables.
Compiler gives precedence to local variable. If same variable is defined globally and locally (Example 2) then
we can access the global variable using “::” (scope resolution operator).

9

Output : XX : 12
 12, 12

Output : XX : 12
 10, 12

Ex
am

pl
e 1

Ex
am

pl
e 2

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Standard Indentation
1. Indentation has to be maintained throughout

the code.
2. It makes code clean and easily readable.
3. Necessary comments before each variable

declaration, if statement etc. are very useful.
4. Variable name : I have given variable names such

as XX, YY, ZZ. In any analysis code, a relevant
name is always recommended.

5. Eg.: KineticEnergy or KE, Mass, Momentum etc.
sometimes we also add ‘i’, or ‘f’, or ‘d’ etc. before
variable name to remind us which variable is
defined as integer, float or double. eg., int
iCount, float fMass.

10

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

11

● ‘Variable’ is a common term in programming language. For computer, it is just a memory
slot.

● int iA = 999; when we define this a memory location is allocated for storing an integer at a
specific address.

● The ‘address’ of a variable can be accessed through “&” operator.

● For every variable there is an address field and a
data field.

● address is shown in hexadecimal number (0x
represents hexadecimal number).

● Usage of ‘address’ will be more clear later when
we’ll just pass the address of a variable instead of
passing its value.

 Contd…..

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

12

● A ‘bit’ is atomic : smallest unit of storage. Can store 0/1.
● A ‘bit’ is too small to use. A group of 8 bits make a ‘byte’. 1 byte = 8 bits. One byte can

store one character, like ‘A’, ‘X’, ‘$’ etc.
● With 1 bit we have two patterns; 0 and 1.
● With 2 bits we have four patterns; 00, 01, 10, 11.
● With n bits we have 2n patterns.
● Data type : char

○ 1 byte. It can make 28=256 different patterns. It can hold a number between 0 and 255 (0,1,2,...,255).
○ Really good for storing letters/characters.
○ Every character is defined by a number : like the alphabet A is 0x41 in Hex (65 in decimal)[read more here].

 Contd…….

https://www.ibm.com/support/knowledgecenter/SSVSD8_8.4.1/com.ibm.websphere.dtx.dsgnstud.doc/references/r_design_studio_intro_Hex_Decimal_and_Symbol_Values.htm

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

13

● short : 2 bytes (short integer)
● int : 4 bytes (integer) [4 bytes = 32 bits; i.e. 232 (= 4294967296) patterns. Range is

-2147483648 to 2147483648]
● unsigned int : 4 bytes [range is 0 to 4294967295]
● long : 4 bytes (long integer)
● unsigned long :
● bool : 1 byte (boolean value true/false)
● float : 4 bytes (floating point)
● unsigned float :
● double : 8 bytes (double precision)
● long double : 8 bytes (long double precision)
● vector, pair, pointer, string, time variable etc. will be discussed later.

Contd…….

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

14

● There are some special characters that are used in C/C++ which are usually not printed
but have a special meaning. They are called ‘Escape Characters or Escape Sequence’.
[details]

● \t means horizontal tab, \v means vertical tab, \n means newline, \” double quote etc.

Contd…….

https://en.cppreference.com/w/cpp/language/escape

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

15

● Mathematical operators :
○ Addition + [a=10; a = a+2; //12]
○ Subtraction - [a=10; a = a-2; //8]
○ Multiplication * [a=10; a = a*2; //20]
○ Division / [a=10; a = a/2; //5]
○ Modulo % [a=10; a = a%2; //0 gives the remainder]

● Compound Assignment operator :
○ += , -=, *=, \=, %=, >>=, <<=, &=, ^=, |=
○ a += 5; means a = a + 5;

● Increment and Decrement operator :
○ ‘++’ is a increment operator [a=1; a++; \\ a becomes 2]
○ ‘--’ is a decrement operator [a=1; a--; \\ a becomes 0]
○ int a; int b = 99; a = ++b; Now, a = 100 and b = 100
○ int a; int b = 99; a = b++; Now, a = 99 and b = 100

Contd…….

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

16

● Relational operators :
○ == equal to (a==b) return false
○ != not equal to (a!=b) return true
○ > greater than (a>b) return true
○ < less than (a<b) return false
○ >= greater than or equal to (a>=b) return false
○ <= less than or equal to (a<=b) return false

● Logical operators :
○ ! logical inversion !(a>b) return false
○ && logical AND (a>b)&&(b<100) return true
○ || logicalOR (a<b)||(b<100) return false
○ a += 5; means a = a + 5;

● Conditional ternary operator :
○ Condition ? result1 : result2
○ a = 100, b=10. c = (a>b) ? a : b. So, c = a = 100
○ a = 100, b=10. c = (a<b) ? a : b. So, c = b = 10

Contd…….

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

17

● bitwise operators :
○ These operators modify the bit pattern of a variable.
○ & AND Bitwise AND
○ | OR Bitwise inclusive OR
○ ^ XOR Bitwise exclusive OR
○ ~ NOT Unary complement (bit inversion)
○ >> SHR Shift bits right
○ << SHL Shift bits left

int a= 12, b=25; cout << (a&b); // output is 8 (in decimal).----
a = 12 = 0 0 0 0 1 1 0 0
b = 25 = 0 0 0 1 1 0 0 1
a&b = 0 0 0 0 1 0 0 0 = 8 (decimal)
a|b = 0 0 0 1 1 1 0 1 = 29 (decimal)

Contd…….

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

18

Contd…….

Right Shift Operator Left Shift Operator

int a = 10; (in binary 1010)
int b = a >>1;
b = 5; (in binary 0101)

int a = 10; (in binary 1010)
int b = a <<1;
b = 20; (in binary 10100)

25 24 23 22 21 20

0 0 1 0 1 0

0 0 0 1 0 1

a
b

25 24 23 22 21 20

0 0 1 0 1 0

0 1 0 1 0 0

a
b

This is useful when we handle binary data file which is written in a specific format in each experimental data.
Unless we understand that specific format, real meaningful data can not be extracted out of that data binary file.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Data Types and Operators

19

● Typecasting operator :
○ float pi = 3.145
○ int ii = (int)pi; // ii = 3
○ Typecasting will be more obvious when we deal with pointers.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Control structure: if and else, loops, break, continue ...
if(condition)
{

//condition is satisfied
//do something

}
else
{

//condition is not satisfied
//do something
//though it is absolutely
//NOT necessary all the time

}

Contd …..

20

if(condition1)
{

//condition is satisfied
//do something

}
elseif(condition2)
{

//condition2 is satisfied
//do something

}
else
{

// none of the conditions are satisfied
//do something
//if we skip it compiler will not complain
//but it is better to have it for a clean code.
//at least print a message

}

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Control structure: if and else, loops, break, continue ...
for loop:

for (int ia=0; ia<101; ia++)
{

cout << ia << “,” ;
}

There is an initialisation : int ia=0,
conditional part : ia<101, and
a statement which is executed : ia++

21

while loop:

While loop is repeated until the condition checked by the while
statement is satisfied.

int a=0;
while (a<100)
{

cout << a << “,” ;
a++;

}

do
{

cout << a << “,” ;
a++ ;

}
while (a<100)

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Control structure: if and else, loops, break, continue ...
Breaking in a for loop:

for (int ia=0; ia<101; ia++)
{

cout << ia << “,” ;
if (ia == 50)
 {

cout << “ia is 50” << ;
break;

 }
}

‘break’ command will stop the loop.

22

continue keyword in a for loop:

for (int ia=0; ia<101; ia++)
{

if (ia == 50) continue; // skip the following line
cout << ia << “,” ;

}

‘continue’ command will NOT stop the loop, but the
following lines of code after it in the block are not
executed.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Switch case structure

23

Here, the value of ‘a’ is hard coded inside
the code.
It is better to have an option to input it
during execution of the code.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Function

24

The compiler converts the program by reading it line
by line;
The compiler does not know ‘Add’ means at line 10
and thus return a compilation error.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Function
This time compiler knows what ‘Add’
function is when it reaches at line 13.

Here, two values are passed to the
function and function returns one value.

What happens if we want our function to
return more than one value?

25

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Function
In ‘Add’ function, function returns one value
through ‘return’ command as its type is defined
as float. Value of ‘z’ is passed through its address.

In ‘AddSub’ function, its type is void; so there is
no ‘return’ command inside function body.
Required values are passed through their
addresses.

Remember, the address of any value is assigned
by the OS and we can’t change it. But we can
access the address to see what value is assigned at
that address or we can change the value for that
variable at that address.

26

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Function overloading
An example of function overloading.
Same function name ‘add’ accepts
integer and float variables and do the
addition.

Users no need to worry which function
to use to add two integers and which one
for float variables.

27

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Arrays
Arrays are used to store a collection of values.
Say, I want to store the age of 5 people.
>> assigning a variable for each person, int age1, age2, ag3, .., age5.
>> using an array : int age[5];
This is an 1-dimensional array of size 5.
Assign values to the array : age[0] = 50, age[1]=20, age[2]=40, age[3]=33, age[4]=7.
Or, this way : int age[5] = {50,20,40,33,7};

2-dimensional array : int XX[5][6]. It is like a (5 x 6) matrix : 5 rows, 6 columns.

An array can have any number of dimensions but it has practical limitations imposed by the size
of the physical memory in the computer.

28

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Structures
Arrays are useful for storing a collection of values which are of similar type. Like, an integer
array can only store integer values.

Structures are a collection of a different data types.
As an example, a structure named ‘student’ can store the age, height, name etc.

struct student {
 int age;
 float height;
 char name[10];
};

29

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Structures

30

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Pointers
A pointer is a special variable which stores the address of a memory location.
A pointer to an integer is declared like: int *p;
int a; //just doing this a memory location will be created for ‘a’ with some random value.
address data variable
5000 56738 a
a=100; // a value is assigned
address data variable
5000 100 a
int *pa; // just defined a pointer to an integer. A memory location will be created
address data variable
2600 23458 pa
int *pa = &a; //now a specific address, here address of variable ‘a’ is passed to the pointer
address data variable
2600 5000 pa

31

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Pointers
Only addresses can be passed to a pointer.

We can not initialise a random value to a pointer. If we do ‘int *p = 100;’ then compiler will
complain.

 The value of ‘a’ was assigned to 100 earlier. We want to change it to 200 but using the pointer
which has the address of ‘a’.
*pa = 200; [previously did : int *pa = &a;]

& is called the reference operator and * is called the dereference operator.

We can also define pointer to a pointer. int *ppa = &pa.

Contd……
32

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Pointers
If there is a data type like int, float etc., before a ‘*’, then the star denotes that the variable next to
it is a pointer.
If not, then the star should be read as “the value at memory location pa is ...”

int var = 10; //variable declaration
int *pvar; // pointer defined
pvar = &var; //assign address of ‘var’ to pointer pvar
int *pvar = &var; //same thing but done in one line

*pvar = &var; // WRONG here *pvar reads the value at memory location
*pvar = 20; // CORRECT here we change the value at memory location from 10 to 20.

33

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

String
String is the modified version of character array
in C. [char str1[10]={‘H’,‘e’,‘l’,‘l’,‘o’};]

str1.begin()
str1.end()
str1.erase(size_t pos, size_t len)

34

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Time variable
● The C++ standard library does not provide a proper date type for time.
● C++ inherits the structs and functions for date and time manipulation from C.

○ To access date and time related functions and structures, you would need to include <ctime>
header file in your C++ program.

● There are four time-related types: clock_t, time_t, size_t, and tm.
○ The types - clock_t, size_t and time_t are capable of representing the system time and date as

some sort of integer.
○ The structure type tm holds the date and time in the form of a C structure having the following

elements
■

35

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Time variable
● The structure type tm holds the date and time in the form of a C structure having the following

elements
■ struct tm {

■ int tm_sec; // seconds of minutes from 0 to 61

■ int tm_min; // minutes of hour from 0 to 59

■ int tm_hour; // hours of day from 0 to 24

■ int tm_mday; // day of month from 1 to 31

■ int tm_mon; // month of year from 0 to 11

■ int tm_year; // year since 1900

■ int tm_wday; // days since sunday

■ int tm_yday; // days since January 1st

■ int tm_isdst; // hours of daylight savings time

■ }

36

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Time variable
● time_t time(time_t *time); This returns the current calendar time of the system in number of seconds elapsed since

January 1, 1970. If the system has no time, .1 is returned.
● char *ctime(const time_t *time); This returns a pointer to a string of the form day month year hours:minutes:seconds

year\n\0.
● struct tm *localtime(const time_t *time); This returns a pointer to the tm structure representing local time.
● clock_t clock(void); This returns a value that approximates the amount of time the calling program has been

running. A value of .1 is returned if the time is not available.
● char * asctime (const struct tm * time); This returns a pointer to a string that contains the information stored in the

structure pointed to by time converted into the form: day month date hours:minutes:seconds year\n\0
● struct tm *gmtime(const time_t *time); This returns a pointer to the time in the form of a tm structure. The time is

represented in Coordinated Universal Time (UTC), which is essentially Greenwich Mean Time (GMT).
● time_t mktime(struct tm *time); This returns the calendar-time equivalent of the time found in the structure

pointed to by time.
● double difftime (time_t time2, time_t time1); This function calculates the difference in seconds between time1 and

time2.
● size_t strftime(); This function can be used to format date and time in a specific format.

37

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Time variable

38

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

File I/O
● A new header is required to perform file input/output : <fstream>

○ <ifstream> this allows only to read file
○ <ofstream> this allows only to write file
○ <fstream> this allows both : read & write

● File Object : fstream outFile.
○ fstream is a class in C++. treat it like other variable type int/float etc. what we have done before.
○ Consider ‘outFile’ is an object of type fstream.

● Opening a file : outFile.open(“outf.txt”, ios::out | ios:app);
○ 1st argument is a file name
○ 2nd argument is a combination of some flags.

● Flags :
○ ios::out open file for writing
○ ios::in open file for reading
○ ios::app append file
○ ios::trunc delete file (if it already exists) and open
○ A combination of them is possible unless and until they conflict each other. Say, ios:app and ios::trunc is not

possible together.
Contd……. 39

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

File I/O

Most of the time we read ASCII file like this.

Binary file is a special file, and we can’t read it
meaningfully unless we know its format.
“ios::binary” is required while opening it.

In high energy physics, we use ROOT software,
and a root file has a specific structure.

40

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes
● Class definition in C++ is its main ingredient.
● Data abstraction and object oriented programming are the main features of C++.
● It may strike for a beginner that the use of C++ is a bit of work around and that most of

things could be achieved with C itself. The fact is true without any doubt.
● But the main goal here is not just the achievement but the way it is achieved and the time it

takes to achieve. Until we write a program that deserves the power of C++ it is hard to
convince oneself.

● The object oriented methodology allows to express here abstract idea very simply. It does
not mean that it improves program performance, and that depends on many things.

41

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes :
● In ‘struct’ all members are public. But in ‘class’ there are three types: private, public, and

protected. By default, any member is private.
class vector
{

private:
int x,y,z; // member variables
public:
void Initialise(int a, int b, int c); // member function

};
void vector::Initialise(int a, int b, int c) {x=a; y=b; z=c;} // remember “::”
int main()
{
 vector v;
 v.Initialise(1,2,3);
 cout << v.x << endl; // Is it correct? Answer is NO. Because, ‘x’ is defined in the scope of class vector; it is a private
member variable of class vector. The object ‘v’ to class vector inside main function can not access it.
}

42

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : private, protected, public keyword
keywords accessible by
private : members of the same class or friends
protected: members of the same class, friends, and derived classes
public: all

class aclassname
{

private:
//define members which are private

public:
//define members which are public

protected:
 //define members which are protected
};

43

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : introduce some methods inside a class
class Vector
{

int x,y,z; // default these are private members to this class
public:

void Initialise(int a, int b, int c);
float Length(); // this is a method. This will calculate the length of the vector

};

void Vector::Initialise(int a, int b, int c) { x=a; y=b; z=c;}

float Vector::Length() { return sqrt(x*x + y*y +z*z); }

44

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : constructor & destructor
● In the previous example we had an explicit method called ‘Initialise’ to set the values of

the vectors.
● Without calling ‘Initialise’ first in ‘main()’ function, if we call the other method

‘Length’, it will return junk value.
● Therefore, it is good that all classes have such a method which initialises the variables

properly and it is better if such crucial methods are not avoided accidentally. This
feature is built in C++ using ‘constructors’.

● A ‘constructor’ can be called as an initialisation method of a class.
○ The ‘constructor’ method has the same name of the class.
○ It takes in variables as parameters just like any other function.
○ A ‘constructor’ can be called only at the time of construction of an object but not anywhere else.

● A ‘destructor’ is the opposite of the ‘constructor’. It is called when an object is deleted.
○ The ‘destructor’ is called before the end of the program automatically even without an explicit call to it.
○ Destructor overloading is not allowed in C++.

45

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : constructor & destructor

46

A class can have many constructors each taking
different arguments, similar to function overloading.
Here, we have two constructors, same name but
different arguments.

It is important to notice that if any constructor has no
parameters then do not use the brackets when an object
is created from it.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : object and pointer to a class

47

When compiled
without ‘delete v3
and delete v4’.Three new keywords:

new : to create a pointer
-> : to access members
delete : to delete and freed memory used by the pointer

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes: Inheritance
● One of the most important concepts in object-oriented programming.
● Inheritance allows us to define a class in terms of another class, which makes it easier to

create and maintain an application.
● Opportunity to reuse the code functionality and fast implementation time.
● When a new class inherits the members of an existing class, then new class is called a

‘derived class’ and the from which it is inherited is called the ‘base class’.
● Think this way : the idea of inheritance implements the ‘Is A’ relationship.

○ Mammal ‘Is A’ animal. Dog ‘Is A’ mammal; hence dog ‘Is A’ animal too.
○ Geant4 is a well extensive simulation software used in high energy physics, nuclear physics, space science,

medical physics. Many physics processes are inherited from a base class. Say, Electromagnetic Physics is a base
class; then Photoelectric Effect, Compton Scattering, Pair production will all inherit from Electromagnetic
Physics class.

○ ROOT is a huge data analysis software used in High Energy Physics. Think about main histogram class which
is a base class; then 1D histogram, 2D histogram are all inherited class from the base class.

48

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes: Inheritance

49

Multiple and Multilevel inheritance are also possible.

Syntax:
class subclassName : access_mode baseclassName {
 // body of subclass
};

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : Inheritance : modes of inheritance
There are three modes : Public, Protected, Private

50

// Base Class
class A
{
 public:
 int x;
 protected:
 int y;
 private:
 int z;
};

// derived Class : mode public
class B : public A
{
 // x public
 // y protected
 // z can’t be accessed from B
};

// derived Class : mode protected
class C : protected A
{
 // x protected
 // y protected
 // z can’t be accessed from C
};

// derived Class : mode private
class D : private A
{
 // x private
 // y private
 // z can’t be accessed from D
};

public member of the base class will
become public in the derived class
and protected members of the base
class will become protected in
derived class.

public member of the base class will
become protected in the derived
class and protected members of the
base class will remain as protected
in derived class.

public & protected member of the
base class will become private in the
derived class.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Classes : Inheritance : levels of inheritance

51

Single Inheritance

Base Class
(A)

Derived
Class (C)

class C : public A
{
 //class body
};

Multiple Inheritance

Base Class
(A)

Derived
Class (C)

class B : public A, public B
{
 //class body
};

Base Class
(B)

Multilevel Inheritance

class B : public A
{
 //class body
};
class C : public B
{
 //class body
};

Base Class
(A)

Derived
Class (B)

Derived
Class (C)

There are Hierarchical Inheritance and Hybrid Inheritance.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Vector : a dynamic array

52

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Friend function inside a class accessing class private member
The private and protected member can be accessed by friend functions and friend classes.

53

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Friend class

54

Like friend functions, there can be friend classes too. If a class is declared as a friend, the friend class can access the members of the
class that declared as a friend (not vice-versa). In below example, the GetArea(square s) is able to access the member s.Length only
because the rect class is defined as friend in square class.

Try with pointer.
square s(2) will be replaced by,
square *s = new square(2).
s.printvalues () will be
s->printvalues()

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Polymorphism and Virtual member
Polymorphism : The type compatibility of the pointer of the base class with the derived class is
called polymorphism. That is the pointer of the base class can point to the pointer of the derived
class but not vice-versa.

Virtual Member : the base class pointer can not still access the members of the derived class.
Like, s->area() is allowed, but sh2->area() is not allowed.
Now, we can move the ‘area’ method into base class; but if we introduce another class, say
triangle, its area is calculated is differently.
This is solved by ‘virtual member’. If a particular method is common to all the derived classes
but have different implementations, a virtual method should be defined in the base class.

Look at next example slide to make it clear

55

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Polymorphism and Virtual member

56

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Compiling code :
● So far, we have discussed functionality of the C++ programming language.

● Now, we need to understand organising the source code, header file, executable binary file
in a more structured way.

● What are *.o or *.so files?

● What is ‘Make’ command?

● What about ‘cmake’?

57

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Compiling code : header file, objects and linking

58

Function forward declaration is done by in the main program when we do #include
“Add.h”.

In a big program, we don’t want to repeat writing such a function in the main
program or in a different source file.

What we do we generate an object file for the function routine. That object file can
be called any time by any program just my linking to the main program.

g++ -c -fPIC Add.cpp
It will create ‘Add.o’ file.

Then compile main program as g++ mainAdd.cpp Add.o -o mainAdd.exe

Compilation of a big program, like CERN-ROOT, takes about 2 hours in a laptop.

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Compiling code : header file, objects and linking

59

Make another file called “Sub.h” which returns (x-y).
Then create an object file for Sub.cpp -> g++ -c -fPIC Sub.cpp. It’ll create Sub.o.

Now, we’ll create a math library “myMath” which contains Addition & Subtraction
function into it.
command: g++ -shared -o libmyMath.so Add.o Sub.o

Now, we have a library of functions, compiled and ready to be called by any programs.
What we have to do is just to add necessary header file in main program and linking libraries
during compilation.

Compilation command:
g++ mainAddSub.cpp -o mainAddSub.exe -L. -lmyMath
-- ‘-l’ before myMath tells the compiler to link to the library myMath. The prefix ‘lib’ and
file extension .so have been dropped.
Flag ‘-L.’ says the library .so file exists in the current directory. If it is not, then we need
-L/<dirpath of library *.so file>

Are you getting “error while loading shared libraries: libmyMath.so: cannot open shared
object file: No such file or directory”?

Do this : export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<dirname>

Faculty of Science
The 2020 SAP Summer Lecture Series, S. Pal

Useful links
● GNU Make : https://www.gnu.org/software/make/manual/make.html
● GNU Make easy example : https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html#zz-2.1
● C++ variable details: http://www.cplusplus.com/doc/tutorial/
● Cmake main website : see tutorial in this page : https://cmake.org/documentation/

60

https://www.gnu.org/software/make/manual/make.html
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/gcc_make.html#zz-2.1
http://www.cplusplus.com/doc/tutorial/
https://cmake.org/documentation/

