
Introduction to Scientific Computing with Python L2

May 11, 2020

Dr. Pietro Giampa

TRIUMF

2020 Winter Term

Lecture 2/3

1 Outline

1) Introduction to Arrays
2) Array Operations
3) Data-Visualization with Matplotlib
4) Exercises

2 Introduction to Arrays

An array is a special variable, which can hold more than one value at a time. Imagine if you are
measuring some data with your experiment if you have three readings you can enter them in Python
as the following (based on our last lecture):

[1]: data_point1 = 45.666
data_point2 = 52.987
data_point3 = 28.735

This works great if the number of data points is small, but what about if you have 100+ or 1000+
data points? This is where arrays come into play. An array can hold many values under a single
variable name, and you can access the values by referring to an index number. NB: the Array index
starts at 0. For example, the above can be re-written using arrays as:

[2]: data = [45.666, 52.987, 28.735]
print('First Data Point',data[0])

First Data Point 45.666

In Python, arrays can store any of the available variable types (Numbers, Strings, Boolean). Arrays
can also be formed out of combinations of variable types. In general, Python always assumes what
the datatype is based on the input, however, if necessary the variable type can be directly passed

1

to the program (requires NumPy). It is always possible to identify the current data-type of one
array with the command dtype.

At any point you can check the length of an Array by using the function len(). Example:

[3]: nentries = len(data)
print('Number of Entries in the Array:',nentries)

Number of Entries in the Array: 3

Arrays can also be augmented by adding new entries. This is done by simply appending a new
value to an already defined array by using the function append. Note, this changes the length of
your Array.

[4]: data.append(56.565)
data.append('Entry')
nentries = len(data)
print('Current Data Array:',data)
print('Number of Entries in the Array:',nentries)

Current Data Array: [45.666, 52.987, 28.735, 56.565, 'Entry']
Number of Entries in the Array: 5

Similar to the ability to add entries to an array, it is also possible to remove parts from it. To
remove entries there are two options: pop(index) or remove(value). The pop command requires an
index and will remove the value at the given index, while remove gets rid of all entries equal to a
given value.

[5]: print('Current Data Array:',data)
data.pop(0)
print('Current Data Array:',data)
data.remove(56.565)
print('Current Data Array:',data)

Current Data Array: [45.666, 52.987, 28.735, 56.565, 'Entry']
Current Data Array: [52.987, 28.735, 56.565, 'Entry']
Current Data Array: [52.987, 28.735, 'Entry']

Arrays can be purged at any time via the command clear(). This action will remove all entries
from a given array permanently, so use carefully.

[6]: print('Current Data Array:',data)
data.clear()
print('Current Data Array:',data)

Current Data Array: [52.987, 28.735, 'Entry']
Current Data Array: []

Thus far we have only dealt with one-dimensional arrays, however, in Python, it is possible to
use an array as a multi-dimension object. (Basically, NxM matrices). For instance here how to
construct a 3x3 array:

2

[7]: data_3b3 = [['x1','x2','x3'],['y1','y2','y3'],['z1','z2','z3']]
print('Select Element 1x3:',data_3b3[0][2])

Select Element 1x3: x3

2.0.1 Example 2.1.1

Use the data below to setup two arrays where the first corresponds to the data timestamp and the
second is the actual data. Remove all the data with timestamp prior to 13:00:00, then add a new
entry with timestamp = 15:52:00 and data = 56.7. Combine the two one-dimensional arrays into
one multi-dimensional array, and print the first entry in the new array.

TIME - Data
12:40:00 45.3
13:52:00 53.7
14:32:00 100.4
14:53:00 134.8
15:32:00 76.3

[8]: ##
Example 2.1.1
Introduction to Scinetific Programming with Python
##
Pietro Giampa, TRIUMF, 2020
##

Define Needed Libraries
import numpy as np

Define Arrays
timestamp = ['12:40:00','13:52:00','14:32:00','14:52:00','15:32:00']
data_points = [45.3, 53.7, 100.4, 134.8, 76.3]
entry_to_remove = []

Find Early Datapoint
for k in range(len(timestamp)):

if timestamp[k]<'13:00:00':
entry_to_remove.append(k)

Remove Early Data-point
for i in range(len(entry_to_remove)):

timestamp.pop(entry_to_remove[i])
data_points.pop(entry_to_remove[i])

Add new Data-point
timestamp.append('15:52:00')
data_points.append(56.7)

3

Combine Arrays into nD Array
data = [timestamp,data_points]
print('New n-dim Array:',data)

New n-dim Array: [['13:52:00', '14:32:00', '14:52:00', '15:32:00', '15:52:00'],
[53.7, 100.4, 134.8, 76.3, 56.7]]

3 Array Operations

In the last lecture, we went through basic operations with variables, Arrays can be treated very
similarly thanks to the NumPy library. Furthermore, NumPy offers standard Matrix operations
for multi-dimensional arrays.

Create Pre-Set Arrays Python and NumPy will let you create and fill basic arrays with a quick
and fast ’one-line’ commands, which can be quite handy in long programs. The following are a list
of useful NumPy commands to remember for array definitions:

• ARANGE(n) = creates an array integer (or floats) of n entries, starting from 0 and increasing
to n-1.

• RANDOM.RANDOM((x,y) or n) = creates an array of size X*Y (or a 1D array of size n)
filled with random numbers generated from 0 to 1.

• ZEROS((x,y) or n) = Similar to the random option, generates a one or multi-dimensions
array filled with zeros.

• FULL((x,y),k) = Generates an array of size X*Y filled with values equal to the input k.
• EYE(d) = Creates a unit matrix of dimension d.

[9]: ### Generates an array of 10 entries from 0 to 9
array1 = np.arange(10)
print('Array1 ARANGE(n):','\n',array1,'\n')

Generates a 2x2 array of random numbers
array2 = np.random.random((2,2))
Generates a linear array with 4 random numbers
array3 = np.random.random(4)
print('Array2 RANDOM.RANDOM((x,y)):','\n',array2,'\n')
print('Array3 RANDOM.RANDOM(n):','\n',array3,'\n')

Generates a 3x1 array of Zeros
array4 = np.zeros((3,1))
print('Array4 ZEROS((x,y)):','\n',array4,'\n')

Generates a 2x3 array fillied with a given value
val = 'Finn'
array5 = np.full((2,3),val)
print('Array5 FULL((x,y),k):','\n',array5,'\n')

4

Generates a 2x2 unit matrix
array6 = np.eye(2)
print('Array6 EYE(d):','\n',array6,'\n')

Array1 ARANGE(n):
[0 1 2 3 4 5 6 7 8 9]

Array2 RANDOM.RANDOM((x,y)):
[[0.49463498 0.88820492]
[0.82458858 0.80664305]]

Array3 RANDOM.RANDOM(n):
[0.68637724 0.96639085 0.03839259 0.28231334]

Array4 ZEROS((x,y)):
[[0.]
[0.]
[0.]]

Array5 FULL((x,y),k):
[['Finn' 'Finn' 'Finn']
['Finn' 'Finn' 'Finn']]

Array6 EYE(d):
[[1. 0.]
[0. 1.]]

Basic Math Similarly to what we saw in the last lecture, the basic math operators can be used
for arrays the same way we learn to use them for individual variables. Recall that similarly to
variables, you can either create a new array or over-write the current array with the operation.

[10]: ### Generate Some Basic Arrays
A1 = np.arange(5)
A2 = np.full(5,2)
print('Array A1:',A1)
print('Array A2:',A2,'\n')

Addition and Subtraction
Asum = np.add(A1,A1)
Asub = np.subtract(A1,A1)
print('Addition A1+A1:',Asum)
print('Subtraction A1-A1',Asub)

Multiplication and Division
Amul = np.multiply(A1,A2)

5

Adiv = np.divide(A1,A2)
print('Multiplication A1*A1:',Amul)
print('Division A1/A1',Adiv)

Square Root
Asqrt = np.sqrt(A1)
print('Square Root A1:',Asqrt)

Summing Over All Elements
AsumE = np.sum(A1)
print('Elements Sum A1:',AsumE)

Array A1: [0 1 2 3 4]
Array A2: [2 2 2 2 2]

Addition A1+A1: [0 2 4 6 8]
Subtraction A1-A1 [0 0 0 0 0]
Multiplication A1*A1: [0 2 4 6 8]
Division A1/A1 [0. 0.5 1. 1.5 2.]
Square Root A1: [0. 1. 1.41421356 1.73205081 2.]
Elements Sum A1: 10

Matrix Algebra Arrays can be interpreted as lists of data-points, but they can also be considered
as standard matrices. In NumPy, all basic matrix algebra operators are available and Python can
be used for all those calculations (other packages could offer more complex options!). Here is a list
of the primary functions:

• numpy.dot(x,y): Dot product between arrays (matrices) X and Y
• numpy.cross(x,y): Cross product between (matrices) arrays X and Y
• x.T: Transposition of array (matrix) X
• numpy.linalg.det(x): Determinant of array (matrix) X
• numpy.linalg.norm(x): Magnitude of array (matrix) X
• numpy.var(x): Variance of an array (matrix)

3.0.1 Example 2.2.1

If you have a particle of mass m=0.02 [kg], with a given position vector r = (2i− j− 3k) [m] and a
velocity matrix of v = (3i + 5j − 4k). Estimate the particle’s angular momentum about the origin
and calculate the magnitude.

Recall that the angular momentum L of a particle of mass m is given by:

L = mr × v

[11]: ##
Example 2.2.1
Introduction to Scinetific Programming with Python
##

6

Pietro Giampa, TRIUMF, 2020
##

Define Needed Libraries
import numpy as np

Define Variables
m = 0.02 # [kg] partical mass

Define Data Arrays
r_array = [2., -1., -3.] # [m] position array
v_array = [3., 5., -4.] # [m/s] velocity array

Create the multi-D Angular Momentum Array
L_array = np.cross(r_array,v_array)
L_array = np.multiply(L_array,m)
L_det = np.linalg.norm(L_array)

Print the Results
print('Angular Momentum L:',L_det,'[kg*m2/s]')

Angular Momentum L: 0.46086874487211654 [kg*m2/s]

4 Data-Visualization with Matplotlib

Learning how to properly visualize your data and results is a crucial component of data analysis.
If a plot is well constructed, whoever sees it can extrapolate all the conclusions he/she/they need.

Matplotlib is the best available option for data-visualization in Python (not even close). The latest
documentation versions can be found at https://matplotlib.org/3.1.1/gallery/index.html (lots and
lots of tutorials and examples).

Mostly a translation from the Matlab library, Matplotlib is available for Linux, ChromeOS, macOS,
and Windows.

Let’s start with the basic, first like any other external library we need to call Matplotlib. I suggest
the following:

[12]: import matplotlib.pyplot as plt

Matplotlib has plenty of option when it comes to visualization and data representation, here some
of the standards:

• plt.plot(x,y) - Creates a standard 1D histogram, given arrays x and y.
• plt.hist(x, nbins) - Creates a histogram based on array x, given a number of bins equal to

nbins.
• plt.bar(x,y,w,align=’center’) - Creates a Bar-chart given x and y, with bars of width w. Bars

center will be placed at value x.

7

• plt.scatter(x,y) - Creates a scatter plot with Markers, given arrays x and y.
• plt.errorbar(x,y,xerr,yerr) - Creates a standard plot where each point is assigned an error

given by the arrays xerr and yerr.
• plt.hist2d(x,y,nbins) - Creates a 2D histogram based on arrays x and y, and given a bin

number of nbins.

A few useful Tips for visualization:

• Always include a Title
• Always label your axis, including units where suitable
• Data should occupy a minimum of 2/3 of your canvas
• Add texts or highlights only if it enhances the message of the results
• Less is more

Here a quick example for a simple plot:

[13]: ### Define Needed Libraries ###
import matplotlib.pyplot as plt

Define Same Arrays
x = [1.,2.,3.,4.]
y = [4.,3.,2.,1.]

Draw Basic Plot, Red Line
plt.plot(x,y,'r-')
plt.title('Simple Plot')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

8

4.0.1 Example 2.3.1

You are in the lab and you are measuring the current of a circuit, as a function of the applied
voltage. Your results are given below:

Voltage = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] Current = [3.3, 4.8, 5.5, 6.2, 7.3, 8.1, 9.9, 10.3,
11.1]

Plot the results above as a standard plot, a bar chart, and a scatter plot. Include all three of them
on the same Canvas.

[14]: ##
Example 2.3.1
Introduction to Scinetific Programming with Python
##
Pietro Giampa, TRIUMF, 2020
##

Define Needed Libraries
import numpy as np
import matplotlib.pyplot as plt

Define X array
Voltage = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # [Volts]

9

Current = [3.3, 4.8, 5.5, 6.2, 7.3, 8.1, 9.9, 10.3, 11.1] # [mAmp]

Split the Canvas in 3
fig, axs = plt.subplots(1, 3, figsize=(15,4)) #Note the size can be adjusted
fig.suptitle('Voltage vs Current, Example 2.3.1') #Set Title

Plot Bar Chart, V vs I, width=0.05 with Center aligment, Red Color
axs[0].bar(Voltage,Current,width=0.05,align='center',facecolor='red')
axs[0].set_xlabel('Voltage [V]')
axs[0].set_ylabel('Current [I]')

Scatter plot, V vs I, Markers set to green cricles
axs[1].scatter(Voltage,Current,c='g',marker='o')
axs[1].set_xlabel('Voltage [V]')
axs[1].set_ylabel('Current [I]')

Basic Plot, V vs I, Blue dotted line
axs[2].plot(Voltage,Current,'b--')
axs[2].set_xlabel('Voltage [V]')
axs[2].set_ylabel('Current [I]')

Plot the results
plt.show()

5 Exercises

Problem 1 Given the following two matrices A and B:

A = [[0.4, 6.4, 2.2],[0.1, 0.3, 2.5],[1.8, 9.9, 0.4]]

B = [[2.1, 2.4, 2.7],[2.1, 5.1, 4.3],[3.3, 8.8, 6.4]]

Write a program that first transposes each matrix, then calculates the determinant, magnitude and
variance. Moreover, the program should calculate the dot and cross product between A and B. All

10

results have to be printed on screen with appropriate descriptions.

Problem 2 You are designing an experiment and you need to understand how far alpha par-
ticles, between 1-5 MeV, travel through foils of Au, Al, Cu. Go to the ASTAR database
(https://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html) and look up the range (CSDA)
tables for the three elements. Extrapolate the data from 1 to 5 MeV and generates four different
arrays (Energy, Range_Au, Range_Al, Range_Cu). Plot the range as a function of energy, for all
three materials, on the same canvas (label everything).

NB: that the range given on ASTAR is in g/cm2, so you will have to scale your array by the
material density to get units of length.

Problem 3 Start by writing a generic function that model Gaussian distribution with x, µ, and
σ as input parameters. First set the mean to 2.5 and sigma to 1.2, plot the function for values of x
from 0 to 5 (label everything as needed). Using the function above generates a 3x3 matrix where
each entry is a different combination of x, µ, and σ. Print the newly created matrices on the screen
with required comments.

Now, consider that each row corresponds to the cartesian coordinates of a unique triangle, use
matrix algebra to determine the area of each of the three triangles.

11

	Outline
	Introduction to Arrays
	Example 2.1.1

	Array Operations
	Example 2.2.1

	Data-Visualization with Matplotlib
	Example 2.3.1

	Exercises

