
1

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Introduction to Scientific
Computing with Python

TRIUMF
May 2020

Dr. Pietro Giampa

Lecture 1

Outline:
1. Why Do We Need Programming in Physics?
2. Basic Variables and Operations
3. Building Loops
4. Set Conditional Statement
5. Constructing Functions
6. Exercises

3

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Multiple Tasks:
1. Multi-steps calculations
2. Data-streaming
3. Data-visualization
4. Data-handling
5. Simulations

Applications at TRIUMF:
1. Beam monitoring software
2. Experimental data-analysis
3. Theoretical calculations
4. Optical simulations
5. ….. and more

1.1 - Why Do We Need Programming in Physics?

4

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Available Variables Type:
1. NUMBERS (10, 28.89, 0x100, 3.1j)
2. STRING (‘Hello World’, ‘Type Here’, ‘I’m a string Example’)
3. BOOLEAN (true, false)

Numbers Options:
1. INTEGER - signed integer - [0, 1, 2, 3, 4 …. etc]
2. LONG - long integer, octal or hexadecimal - [51924361L, 0x19323L etc]
3. FLOAT - floating point real values - [0.32, 100.2, 54.67899 etc]
4. COMPLEX - standard complex numbers - [7.12j, 0.876j, 23j ... etc]

1.2 - Basic Variables and Operations

5

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.2 - Basic Variables and Operations

Example 1.2.1

You are on a plane from Vancouver to Ottawa and
you know the avg cruising speed (1024.0 [km/h])

and the length of the travel (3.8 [h]) and you want to
estimate the distance you traveled.

PS: Air Canada removed distance traveled from
their interactive Map (very annoying)

6

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.2 - Basic Variables and Operations

Example 1.2.2

You are running an experiment and you have to
monitor a given observable, let's say the level of the

LN2 dewar you are using for cooling your
experiment. You want to write a small program that

lets you input a LN2 level in % and convert that
number into liters.

(100% = 255 L, assume linearity)

7

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.3 - Building Loops
Loops are a fundamental block in programming. While we are gonna focus on Python, the basic concept of loops is the
same for basically all programming languages (C++, Java etc).

FOR LOOPS: A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or a string).

WHILE LOOP: With the while loop we can execute a set of statements as long as a condition is true.

8

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.3 - Building Loops
Example 1.3.1

Let's use Poisson statistics as an example. Say you have an experiment with an average event rate of 3.2 events every
hour. You want to estimate the probability of getting either 0, 1, 2, 3, 4, and 5 events in the one hour span.

Recall the Poisson distribution:

Where k is the expected number of events and λ is the average event rate of the experiment.

9

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.4 - Set Conditional Statements

Conditional statements, alongside loops, are the absolute basics of programming. Similar to loops, we will focus on the
Python syntax, however, the basic concepts of conditional statements holds true for most languages (C++, Jave etc).

Decision making is required when we want to execute a code only if a certain condition is satisfied.

Conditionals:

● < - Less than …
● > - Bigger than ...
● <= - Less or equal to ...
● >= - Bigger or equal to ...
● == - Equal to ...
● != - Different than ...
● and - and option
● or - or option

10

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.4 - Set Conditional Statements

IF STATEMENT: Python makes a decision based on a test
expression. if the requirement is passed the subsequent
actions are taken, if not the program skips ahead.

ELSE STATEMENT: The else statement must follows an if
statement. The structure works as follows: if the requirement
is passed the subsequent actions are taken, if not the
program executes the actions from the else statement

ELIF STATEMENT: Sometimes multiple if-statements in
consecutive order are necessary (imagine a decision tree). In
that case, IF is only used for the first iteration, while elif brings
the second conditional.

11

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.4 - Set Conditional Statements

Example 1.4.1

Generate two random numbers between 0 and
1. Check if both numbers are less than 0.5

multiply them together, if only one of the is less
than 0.5 add them together, and if they are both
bigger or equal than 0.5 subtract them. Print the

result on the screen (include both random
numbers).

12

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.5 - Building Functions

Some actions, calculations or conditionals might be used recurrently in a given program, in those cases functions are the
best way to go.

A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide better
modularity for your application and a high degree of code reusing.

functions can generate actions (like print()) or return values (individual or arrays).

13

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

1.5 - Building Functions
Example 1.5.1

Construct a function to model radioactive decays by
following the standard radioactive decay law:

Where N(t) is the number of remaining daughters at
time t, N0 is the starting daughters concentration and
λ is the half-life. If you inject 4.6x1015 Nuclei of 222Rn
in your detector, write a program that determines how

many Rn daughters you will measure after 1 day, 4
days and 9 days.

Lecture 2

Outline:
1. Introduction To Arrays
2. Arrays Operation
3. Data-Visualization with Matplotlib
4. Exercises

15

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.1 - Introduction To Arrays

An ARRAY is a special variable, which can hold more than one value per time.

You can access array entries anytime in your code by simple passing the array name and the
number of the entry you require:

data[0] = 45.666

LAST LECTURE THIS LECTURE

16

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.1 - Introduction To Arrays

Let’s review the ABC of Arrays with Python:

● How do I check the length of a given array? len(array)

● How do you add entries to an array? array.append(x)
(NB: No restrictions on the entry type)

17

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.1 - Introduction To Arrays

Let’s review the ABC of Arrays with Python:

● How do I remove elements from an array? array.pop(entry #) or array.remove(x)

● How do you I completely remove all entries from an array? array.clear()

18

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.1 - Introduction To Arrays

Let’s review the ABC of Arrays with Python:

● Arrays can be multidimensional, no just 1-D, but 2-D, 3-D etc

19

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Example 2.1.1

Use the data below to setup two arrays where the
first corresponds to the data timestamp and the

second is the actual data. Remove all the data with
timestamp prior to 13:00:00, then add a new entry

with timestamp = 15:52:00 and data = 56.7.
Combine the two one-dimensional arrays in to one
multi-dimensional array, and print the first entry in

the new array.

 TIME - Data
 12:40:00 45.3
 13:52:00 53.7
 14:32:00 100.4
 14:53:00 134.8
 15:32:00 76.3

2.1 - Introduction To Arrays

20

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.2 - Arrays Operations
This is really the main reason for pushing the

numpy library in the last lecture.

● ARANGE(n) = creates an array integers (or floats) of n
entries, starting from 0 and increasing to n-1.

● RANDOM.RANDOM((x,y) or n) = creates an array of
size X*Y (or a 1D array of size n) filled with random
numbers generated from 0 to 1.

● ZEROS((x,y) or n) = Similar to the random option,
generates a one or multi-dimensions array filled with
zeros.

● FULL((x,y),k) = Generates an array of size X*Y filled
with values equal to the input k.

● EYE(d) = Creates a unit matrix of dimension d.

21

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.2 - Arrays Operations
Standard matrix algebra functions are also

available via numpy.

● numpy.dot(x,y): Dot product between arrays (matrices)
X and Y.

● numpy.cross(x,y): Cross product between (matrices)
arrays X and Y.

● x.T: Transposition of array (matrix) X.
● numpy.linalg.det(x): Determinant of array (matrix) X.
● numpy.linalg.norm(x): Magnitude of array (matrix) X.
● numpy.var(x): Variance of array (matrix).

22

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Example 2.2.1

If you have a particle of mass m=0.02 [kg], with a given
position vector 𝑟=(2𝐢−𝐣−3𝐤) [m] and a velocity matrix of

𝑣=(3𝐢+5𝐣−4𝐤) [m]. Estimate the particle's angular
momentum about the origin and calculate the magnitude.

Recall that the angular momentum 𝐋 of a particle of mass

𝐦 is given by:

𝐋 = 𝐦𝐫×𝐯

2.2 - Arrays Operations

23

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.3 - Data-Visualization with Matplotlib

Learning how to properly visualize your data and results is a crucial component of data-analysis. If a
plot is well constructed, whoever see it can extrapolate all the conclusions he/she/they need.

Matplotlib is the best available option for data-visualization in Python (not even close). The latest
documentation versions can be found at: https://matplotlib.org/3.1.1/gallery/index.html (lots and lots of
tutorials and examples).

x

https://matplotlib.org/3.1.1/gallery/index.html

24

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.3 - Data-Visualization with Matplotlib
Matplotlib is a huge library with many many

options, here are just the basics:

● plt.plot(x,y) - Creates a standard 1D histogram, given
arrays x and y.

● plt.hist(x, nbins) - Creates an histogram based on
array x, given number of bins equal to nbins.

● plt.bar(x,y,w,align='center') - Creates a Bar-chart
given x and y, with bars of width w. Bars center will be
place at value x.

● plt.scatter(x,y) - Creates a scatter plot with Markers,
given arrays x and y.

● plt.errorbar(x,y,xerr,yerr) - Creates a standard plot
where each point is assigned an error given by the arrays
xerr and yerr.

● plt.hist2d(x,y,nbins) - Creates a 2D histogram based
on arrays x and y, and given a bin number of nbins.

25

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

2.3 - Data-Visualization with Matplotlib
Useful Tips

● Always include a Title
● Always label your axis, including units where suitable
● Data should occupy a minimum of 2/3 of your canvas
● Add texts or highlights only if it enhance the results
● Less is more

26

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Example 2.3.1

You are in the lab and you are measuring the current of a
circuit, as a function of the applied voltage. Your results are
given below:

Voltage = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] Current
= [3.3, 4.8, 5.5, 6.2, 7.3, 8.1, 9.9, 10.3, 11.1]

Plot the results above as a standard plot, a bar chart, and
a scatter plot. Include all three of them on the same
Canvas.

2.3 - Data-Visualization with Matplotlib

Lecture 3

Outline:
1. Handling Large Datasets With Pandas
2. Data Fitting With SciPy
3. Interpolation With SciPy
4. Exercises

28

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Pandas is an incredible library capable of doing almost everything needed for large dataset
analysis. For documentation or instructions on how to install the library go to their website:

https://pandas.pydata.org/ In general, there are two types of Pandas objects:

● Series: A one-dimensional data structure that can store values, and for every value it holds a
unique index, too.

● Data Frames: A two (or more) dimensional data structure. Effectively a table with rows and
columns. The columns have names and the rows have indexes.

as always, you need to remember to add the library into your code, like this:

https://pandas.pydata.org/

29

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Pandas can take almost any data files or data list as input and convert it into a DataFrame that is
easy to use (whether you are working with text files, CSV files, SQL files, and others). To import

data you only need a simple line of code using a function called read_csv().

In
de

x

columns

30

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Load data from file:

print(DataFrame) DataFrame

31

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

Access any DataFrame point using column name and index #

Get Data Frame Subset

3.1 - Handling Large Datasets With Pandas

32

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Create Data Frames from Subset Selected with Conditionals:

33

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Create New Column From Basic Operation Between Other Columns

34

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Pandas have a series of very simple one-line-commands that will let do basic operation on an
individual or multiple columns at the same time. Here the command list:

● count() - Returns the number of rows in each columns
● sum() - Returns the sum of all entries in a given column(s). (NB: Thinks get funky if you

use this for non-numbers).
● min() - Returns the smallest value in the selected column(s).
● max() - Returns the maximum value in a given column(s).
● mean() - Returns the mean of the selected column(s).

35

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas
Data Frames Can Always Be Sorted By Any Column

36

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.1 - Handling Large Datasets With Pandas

Example 3.1.1

You are trying to measure the envelope of a certain beam
at TRIUMF, and you just completed a measurement using
two different detectors (DET1 and DET2). The data from
your measurements are saved in Example311.txt (tab
edited). The file contains 4 columns: DetectorType, X, Y,
Xerr, Yerr (all data in units of [mm]). Load the data into a
Pandas data frame. Then do the following:

● Print the first 5 elements, the last 5 elements and 5
random elements on the screen.

● Create a new Data Frame selecting only entries for
DET1.

● Find the min, max, and mean in X and Y.
● Add the errors together, and create a new column

with the result.
● Sort based on the column generated in the last

bullet point, and change the index to match the
new ordering.

37

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.2 - Data Fitting With SciPy

Data fitting is one of the most useful toolsets for data analysis, it's the ultimate test between data and prediction. In Python, there are
different options for data fitting. However, in this course, we will only review a method from the SciPy library called curve_fit. This is the
most versatile fitting tool and adequate for all scientific levels.

Cureve_fit requires a fitting function, a dataset input and a series of optional parameters. Here the most common and useful input
parameters:

● ydata - can be used to weight the fed dataset.
● p0 - Prior for floating parameters, this must be input as an array.
● bounds - Set limits on parameters floats.
● method - Allows you to change the minimization method.

Moreover, the cureve_fit function returns two arrays:

● popt - Optimal values for the parameters so that the sum of the squared residuals off(xdata, *popt) - ydata is minimized
● pcov - The estimated covariance of popt. The diagonals provide the variance of the parameter estimate. To compute one

standard deviation errors on the parameters use perr = np.sqrt(np.diag(pcov)). How the sigma parameter affects the estimated
covariance depends on absolute_sigma argument, as described above.

38

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.2 - Data Fitting With SciPy

Example 3.2.1

Create a Gaussian function that receives as input
parameters, 𝐴, 𝜇, 𝜎. Your code should then generate 100
random numbers distributed following a Gaussian
distribution with A=100.0, 𝜇=55.0, 𝜎=32.5. Finally, fit the
generated data with a gaussian fit. Print the extracted
parameters on the screen next to the input parameters.
Lastly. plot the data and the fit on a Canvas (include all
labels).

39

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.3 - Interpolator With SciPy

The interpolator is an essential data analysis tool. Interpolation is a convenient method to create a function based on
fixed data points, which can be evaluated anywhere within the domain defined by the given data using linear
interpolation. An instance of this class is created by passing the 1-D vectors comprising the data.

SciPy has a great option for interpolator, more precisely the interp1d function. This enables the user to perform
interpolation on any combination of two arrays (or data). Note that SciPy also offers multi-dimensional interpolators,
but those are beyond the scope of this course.

interp1d requires two input arrays (x and y data), with an option for some extra parameters. For example, you can use
the parameter 'kind' to set the interpolator in liner, cubic or nearest mode.

40

D
is

co
ve

ry
,

ac
ce

le
ra

te
d

3.3 - Interpolator With SciPy

Example 3.3.1

Generate 50 random data points, distributed following a sin
function. Interpolate the generated data using both the liner
and spline method and plot the results to show any
differences (include all labels).

