
A Crash Course In Statistics

Summer Student 
Lecture

Scott Oser
UBC/TRIUMF
May 15, 2020



2

Basic mathematics of probability

1) Probabilities are numbers between 0 and 1.

2) P(A or B) = P(A) + P(B) – P(A & B)

3) Conditional probability:  P(A & B) = P(B) P(A|B).
Read as “the probability of B times the probability of A
given B”.

4) A special case of conditional probability: if A and B
are independent of each other (nothing connects them),
then

P(A & B) = P(A) P(B)
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Probability Distribution Functions

Discrete distribution (cleanly separated outcomes): 

P(H) = probability of H being true

Ex. H = “rolling two dice gives a total of 7”

Continuous distribution:

P(x) dx = probability that x lies in the range (x, x+dx)

Ex. probability of mean of N measurements being between 5.00 
and 5.01

NORMALIZATION CONDITION:

∑ P ( H i )= 1  or ∫ dx P ( x )=1
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Joint PDFs
We often have multi-dimensional probability distributions:  
P(x,y), where X and Y are two random variables.

These have the obvious interpretation that
P(x,y) dx dy = probability that X is the range x to x+dx while 
simultaneously Y is in the range y to y+dy.  This can trivially 
be extended to multiple variables, or to the case where one or 
more variables are discrete and not continuous.

Normalization condition still applies:

To generate a probability distribution for one variable only, we 
marginalize by integrating over the unwanted variable(s):

∫ d x⃗ i P ( x⃗ i )=1

P ( x )=∫ dy P ( x,y )
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The Centre of the Data: Mean, Median, & Mode
 Mean of a data set:

x̄=
1
N ∑

i=1

N

x i

Median:  the point with 
50% probability above 
& 50% below.  Less 
sensitive to tails!

Mode: the most likely 
value

μ≡⟨ x ⟩≡∫ dx P ( x ) x

Mean of a PDF = 
expectation value 
of x

mean

mode

median
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The Width: Variance V / standard Deviation 

Variance of a distribution: V ( x )≡σ 2=∫ dx P ( x ) ( x− μ )2

V ( x )=∫ dx P ( x ) x2−2 μ∫ dx P ( x ) x+μ2∫ dx P ( x )=⟨ x2⟩−μ2=⟨ x2⟩−⟨ x ⟩2

Variance of a data sample (regrettably has same notation as 
variance of a distribution---be careful!):

V ( x )=σ 2=
1
N ∑

i
( x i− x̄ )

2= x2− x̄2

An important point: the above formula underestimates the variance of 
the underlying distribution, since it uses the mean calculated from the 
data instead of the true mean  of the true distribution.  

V̂ ( x )=σ 2=
1

N −1 ∑
i

( x i− x̄ )
2

V ( x )=σ 2
=

1
N ∑

i
( x i− μ )

2

Use this if you know the true mean of 
the underlying distribution.

This is unbiased if you must estimate
the mean from the data.
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Covariance & Correlation
The covariance between two variables is defined by:

cov ( x,y )=⟨ ( x− μx ) ( y−μ y ) ⟩=⟨ xy ⟩−⟨ x ⟩ ⟨ y ⟩

This is the most useful thing they never tell you in most lab 
courses!  Note that cov(x,x)=V(x).

The correlation coefficient is a unitless version of the same 
thing:

ρ=
cov ( x,y )

σ x σ y

If x and y are independent variables (P(x,y) = P(x)P(y)), then

cov ( x,y )=∫dx dy P ( x,y ) xy−(∫dx dy P ( x,y ) x ) (∫ dx dy P ( x,y ) y )

∫dx P ( x ) x∫ dy P ( y ) y−(∫ dx P ( x ) x ) (∫ dy P ( y ) y )= 0
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More on Covariance

Correlation 
coefficients for some 
simulated data sets.  

Note the bottom 
right---while 
independent 
variables must have 
zero correlation, the 
reverse is not true!  

Correlation is 
important because it 
is part of the error 
propagation 
equation, as we'll 
see.
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Gaussian Distributions
By far the most useful distribution is the Gaussian (normal) 

distribution:

P ( x|μ,σ )=
1

√2 πσ 2
e

−
1
2 ( x−μ

σ )
2

68.27% of area within 1
95.45% of area within 2
99.73% of area within3

Mean = , Variance=2

Note that width scales with .

Area out on tails is important---use 
lookup tables or cumulative 
distribution function.

In plot to left, red area (>2) is 
2.3%.

90% of area within 1.645
95% of area within 1.960
99% of area within2.576



Physics 509
10

Why are Gaussian distributions so critical?
They occur very commonly---the reason is that the average of several 
independent random variables often approaches a Gaussian distribution 
in the limit of large N.

Nice mathematical properties---infinitely differentiable, symmetric.  Sum 
or difference of two Gaussian variables is always itself Gaussian in its 
distribution.

Many complicated formulas simplify to linear algebra, or even simpler, if 
all variables have Gaussian distributions.

Gaussian distribution is often used as a shorthand for discussing 
probabilities.  A “5 sigma result” means a result with a chance probability 
that is the same as the tail area of a unit Gaussian:

2∫
5

∞

dt P (t|μ= 0 ,σ= 1 )

This way of speaking is used even for non-Gaussian distributions!
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The Central Limit Theorem

If X is the sum of N independent random variables x
i
, each taken 

from a distribution with mean 
i
 and variance 

i
2, then the 

distribution for X approaches a Gaussian distribution in the limit of 
large N.  The mean and variance of this Gaussian are given by:

⟨ X ⟩=∑ μi

V ( X )=∑ V i=∑ σ i
2
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The Central Limit Theorem: the caveats

• I said N independent variables!
• Obviously the variables must individually have finite variances.
• I've said nothing about how fast the distribution approaches a

Gaussian as N goes to infinity.  But it can be fast!  Consider below
the sum of N uniformly distributed variables
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The General Multidimensional Gaussian ...

Parametrized by vector of means, µ , and covariance matrix V.

P ( x⃗ )=exp [− 1
2

( x⃗−⃗)
T
⋅V −1

⋅( x⃗−⃗) ]

oser
Stamp
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Interpretations of probability

Two interpretations of what we mean by probability:

1) The frequentist school: Probability is a statement about frequency.
If you repeat a measurement 1000 times and get the same outcome
200 times, the probability of that outcome is 0.2.

2) The Bayesian school: Probability quantifies our certainty about
a statement, and hence is a statement about our knowledge.
People with different knowledge may assign different probabilities ...
while I say the probability of rain tomorrow is 1/3, you may have reason
to believe otherwise and may rightfully assign a different probability.
In this sense probability estimates depend on the information we possess.
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Problems with the frequentist interpretation

1) We naturally want to talk about the probability of events that are
not repeatable even in principle.  Tomorrow only happens once---
can we meaningfully talk about frequencies of its weather?
Maybe we want to talk about the probability of some cosmological
parameter, but we only have one universe!  A strict interpretation
of probability as frequency says that we cannot use the concept of
probability in this way.

2) Probability depends on the choice of ensemble you compare to,
which may be non-obvious.  The probability of someone in a
crowd of people being a physicist depends on whether you are
talking about a crowd at a hockey game, a crowd at a university
club, or a crowd at in this audience.

In spite of these conceptual problems, the “frequentist 
interpretation” is the most usual interpretation used in science.
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The Bayesian interpretation

This goes most commonly by the name “Bayesian statistics”.  In this 
view probability is a way of quantifying our knowledge of a situation.  
P(E)=1 means that it is 100% certain that E is the case.  Our estimation 
of P depends on how much information we have available, and is 
subject to revision.

The Bayesian interpretation is the cleanest conceptually, and actually is 
the oldest interpretation.  Although it is gaining in popularity in recent 
years, it's still a minority view.  The main objections are:

1) As a statement about our knowledge of a situation, Bayesian
probabilities seem “subjective”.  Science is supposed to be an objective
subject.
2) It is not always obvious how to quantify the prior state of our
knowledge upon which we base our probability estimate.

Increasingly many people see these objections as not serious.
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Frequentist vs. Bayesian Comparison

Bayesian Approach

“The probability of the particle's 
mass being between 1020 and 
1040 MeV is 98%.”

Considers the data to be known 
and fixed, and calculates 
probabilities of hypotheses or 
parameters.

Requires a priori estimation of the 
model's likelihood, naturally 
incorporating prior knowledge.

Well-defined, automated “recipe” 
for handling almost all 
problems.

Frequentist Approach
 “If the true value of the

particle's mass is 1030 MeV,
then if we repeated the
experiment 100 times only
twice would we get a
measurement smaller than
1020 or bigger than 1040.”

 Considers the model
parameters to be fixed (but
unknown), and calculates the
probability of the data given
those parameters.

 Many “ad hoc” approaches
required depending on
question being asked.  Not all
consistent!
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Bayes' Theorem

P ( H|D )=
P ( H ) P ( D|H )

P ( D )

H = a hypothesis (e.g. “the 
electron's mass is in the range 
9.10 – 9.11 x10-31 kg”)

D = the data

P(H) = the “prior probability” 
for H

P(D|H) = the probability of 
measuring D, given H.  Also 
called the “likelihood”

P(D) = a normalizing constant: 
the probability that we would 
have measured D anyway, 
averaged over values of H.

End result: a posterior probability distribution for the 
parameter(s).
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An example with parameter estimation: coin 
flip

Someone hands you a coin and asks you to estimate the p value 
for the coin (probability of getting heads on any given flip).

You flip the coin 20 times and get 15 heads. 

What do you conclude?
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Bayesian coin flipping

Someone hands you a coin and asks you to estimate the p value 
for the coin (probability of getting heads on any given flip).

You flip the coin 20 times and get 15 heads. 

What do you conclude?

Here H is the hypothesis that p has some particular value.  To 
proceed we must evaluate each term.

P ( H|D )=
P ( H ) P ( D|H )

P ( D )
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Evaluating the terms in the Bayesian coin flip

First, some notation.  Let me use p in place of H.

Prior: let's assume a uniform prior for p.  So P(H) = P(p) = 1.

Likelihood factor: P(D|p).  This is the probability of observing our 
data, given p.  We model this as a binomial distribution:

P ( H|D )=
P ( H ) P ( D|H )

P ( D )

P ( D| p )=
N!

m! ( N −m ) !
pm (1− p ) N − m

Finally P(D).  This is the probability of observing the data, summed 
over all hypotheses (here, all possible values of p).

P ( D )=∫
0

1

dp P ( p )
N!

m! ( N −m ) !
pm (1− p ) N− m
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Solution for P(p|D,I): uniform prior

P ( p|D )∝ P ( p ) P ( D|p )=
N!

m! ( N −m )!
pm (1− p )N −m



23

Bayesian coin flip: alternate prior

If a cashier hands you a coin as change, is it really reasonable to 
assume a uniform prior for p?  Unbalanced coins must be really 
rare!

Consider a more plausible prior:

1) You're 99.9% sure this is a normal coin.  A normal coin has
p=0.5.  But even normal coins might be a little off-kilter, so model
its distribution as a Gaussian with mean 0.5 and width =0.01.
2) There's a 0.1% chance this is a trick coin.  If so, you have no
idea what its true p value would be, so use a uniform distribution.

P ( p )=0. 999×
1

√2 π σ
e

−
( p−0. 5 )2

2 σ2
+0 .001×1
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Solution for P(p|D): more realistic prior

Prob in peak at 0.5 = 0.999

Prob in peak at 0.5 = 0.997

Prob in peak at 0.5 = 0.030
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Dependence on choice of prior
Clearly you get a different answer depending on which prior you 
choose!  This is a big point of controversy for critics.

A Bayesian's reply: “Tough.”

In Bayesian analysis, dependence on choice of priors is a feature, 
not a bug.  The prior is a quantitative means of incorporating 
external information about the quantities being measured.  If the 
answer depends strongly on the choice of prior, this just means 
that the data is not very constraining.

In contrast, classical frequentist analysis doesn't require you to 
spell out assumptions so clearly---what are you implicitly assuming 
or ignoring?

Good habits for Bayesian analysis:
 be explicit about your choice of prior, and justify it
 try out different priors, and show how result changes
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Contrast with frequentist approach

A frequentist would use the data to directly estimate p from the 
data, without invoking prior.  Best estimate is p=15/20=0.75.

Frequentist would probably try to assign an “error bar” to this 
value.  Perhaps noting that variance of binomial is Np(1-p), we 
could calculate Var=20(0.75)(0.25)=3.75, or =sqrt(Var)=1.94.  So 
the error on p might be 1.94/20 = 0.097, so p=0.75 ± 0.10.  (What 
would a frequentist do if she observed 20/20 heads?)

But interpretation is very different.  Frequentist would not speak of 
the probability of various p values being true.  Instead we talk 
about whether the data is more likely or less likely given any 
specific p value.  Very roundabout way of speaking!

Note that the p value estimation did not:
 yield a probability distribution for p
 did not incorporate any background information (eg. the fact that

 almost any coin you regularly encounter will be a fair coin)
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Justifying priors: the principle of Ignorance
In the absence of any reason to distinguish one outcome from 
another, assign them equal probabilities.

Example: you roll a 6-sided die.  You have no reason to believe 
that the die is loaded.  It's intuitive that you should assume that 
all 6 outcomes are equally likely (p=1/6) until you discover a 
reason to think otherwise.

Example: a primordial black hole passing through our galaxy 
hits Earth.  We have no reason to believe it's more likely to 
come from one direction than any other.  So we assume that 
the impact point is uniformly distributed over the Earth's surface.

Parametrization note: this is not the same as assuming that all 
latitudes are equally likely!
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Uniform Prior
Suppose an unknown parameter refers to the location of 
something (e.g. a peak in a histogram).  All positions seem 
equally likely.

Imagine shifting everything by x'=x+c.  We demand that
p(X) dX = P(X') dX' = P(X') dX.  This is only true for all c if P(X) 
is a constant.

Really obvious, perhaps ... if you are completely ignorant 
about the location of something, use a uniform prior for your 
initial guess of that location.

Note: although a properly normalized uniform prior has a finite 
range, you can often get away with using a uniform prior from 
-∞ to +∞ as long as the product of the prior and the likelihood 
is finite.
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Jeffreys Prior
Suppose an unknown parameter measures the size of 
something, and that we have no good idea how big the thing 
will be (1mm? 1m? 1km?).  We are ignorant about the scale. 
Put another way, our prior should have the same form no 
matter what units we use to measure the parameter with.  If 
T'=T, then

P (T ) dT=P (T' ) dT'=P (T' ) βdT

P∴ (T ) =βP ( βT ) , which is only true for all β  if

P (T )=
constant

T

Properly normalized from T
min

 to T
max 

this is:

P (T )=
1

T ln (T max /T min )



Given enough data, priors don't matter

The more constraining 
your data becomes, the 
less the prior matters.

When posterior 
distribution is your much 
narrower than prior, the 
prior won't vary much 
over the region of 
interest.  Most priors 
approximate to flat in 
this case.

Consider the case of 
estimating p for a 
binomial distribution 
after observing 20 or 
100 coin flips.
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Bayesian estimators

You're already seen the Bayesian solution to parameter 
estimation ... if your data is distributed according to a PDF 
depending on some parameter a, then Bayes' theorem gives you 
a formula for the PDF of a:

P ( a|D )=
P ( a ) P ( D|a )

∫ da P (a ) P ( D|a )
=

P (a ) P ( D|a )

P ( D )

The PDF P(a|D) contains all the information there is to have 
about the true value of a.  You can report it any way you like---
preferably by publishing the PDF itself, or else if you want to 
report just a single number you can calculate the most likely 
value of a, or the mean of its distribution, or whatever you want.

There's no special magic: Bayesian analysis directly converts the 
observed data into a PDF for any free parameters.
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Frequentist estimators

Frequentists have a harder time of it ... they say 
that the parameters of the parent distribution 
have some fixed albeit unknown values.  “It 
doesn't make sense to talk about the probability 
of a fixed parameter having some other value---
all we can talk about is how likely or unlikely was 
it that we would observe the data we did given 
some value of the parameter.  Let's try to come 
up with estimators that are as close as possible 
to the true value of the parameter.”



33

Maximum likelihood estimators
By far the most useful estimator is the maximum likelihood 
method.  Given your data set x

1
 ... x

N 
and a set of unknown 

parameters , calculate the likelihood function

L (x1 . . . x N|α )=∏
i=1

N

P ( x i|α )

It's more common (and easier) to calculate -ln L instead:

−ln L ( x1. . . xN|α )=−∑
i=1

N

ln P ( xi|α )

The maximum likelihood estimator is that value of which 
maximizes L as a function of .  It can be found by 
minimizing -ln L over the unknown parameters.
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Simple example of an ML estimator
Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

P A ( x )=
2

1−e−2
e−2 x

PB ( x )=3 x2

P tot ( x )=f P A ( x )+ (1 − f ) P B ( x )
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Form for the log likelihood and the ML 
estimator
Suppose that our data sample is drawn from two different 
distributions.  We know the shapes of the two distributions, but not 
what fraction of our population comes from distribution A vs. B.  We 
have 20 random measurements of X from the population.

P tot ( x )=f P A ( x )+ (1 − f ) P B ( x )

Form the negative log likelihood:

Minimize -ln(L) with respect to f.  Sometimes you can solve this 
analytically by setting the derivative equal to zero.  More often you 
have to do it numerically.

Notice: binning is not necessary!

−ln L ( f )=−∑
i=1

N

ln ( Ptot ( x i|f ) )
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Graph of the log likelihood
The graph to the left 
shows the shape of the 
negative log likelihood 
function vs. the unknown 
parameter f.

The minimum is f=0.415. 
This is the ML estimate.

As we'll see, the “1” 
error range is defined by 
 ln(L)=0.5 above the 
minimum.

The data set was actually 
drawn from a distribution 
with a true value of f=0.3
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Maximum Likelihood with Gaussian Errors

Suppose we want to fit a set of points (x
i
,y

i
) to some model 

y=f(x|), in order to determine the parameter(s) . Often the 
measurements will be scattered around the model with some 
Gaussian error.  Let's derive the ML estimator for 

The log likelihood is then

Maximizing this is equivalent to minimizing

L=∏
i=1

N
1

σ i √2 π
exp [− 1

2 (
yi−f ( xi|α )

σi
)

2

]

ln L=−
1
2

∑
i=1

N

(
y i− f ( xi|α )

σ i
)
2

−∑
i=1

N

ln (σ i √2 π )

χ2=−2ln L=∑
i= 1

N

(
y i− f ( xi|α )

σ i
)
2
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Relation to Bayesian approach
There is a close relation between the ML method and the 
Bayesian approach.

The Bayesian posterior PDF for the parameter is the product of 
the likelihood function P(D|a) and the prior P(a).  

So the ML estimator is actually the peak location for the 
Bayesian posterior PDF assuming a flat prior  P(a)=1.

The log likelihood is related to the Bayesian PDF by:

P(a|D) = exp[ ln(L(a)) ]

This way of viewing the log likelihood as the logarithm of a 
Bayesian PDF with uniform prior is an excellent way to intuitively 
understand many features of the ML method.
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The Least Squares Method
Taken outside the context of the ML method, the least 
squares method is the most commonly known estimator.

χ2=∑
i=1

N

(
y i− f ( xi|α )

σ i
)
2

Why?

1) Easily implemented.
2) Mathematically straightforward---often analytic solution
3) Extension of LS to correlated uncertainties

straightforward:

χ2=∑
i=1

N

∑
j=1

N

( y i−f ( x i|α ) ) ( y j−f ( x j|α ) ) (V−1 )ij
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Least Squares Straight Line Fit
The most straightforward example is a linear fit:  y=mx+b.

χ2
=∑ (

y i−mxi−b

σ i
)

2

Least squares estimators for m and b are found by differentiating 
2 with respect to m & b.

dχ 2

dm
=−2∑ (

y i−mx i−b

σ i
2 )⋅xi=0

dχ 2

db
=−2∑ (

y i−mx i−b

σ i
2 )=0

This is a linear system of simultaneous equations with two 
unknowns.
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Solving for m and b
The most straightforward example is a linear fit:  y=mx+b.

dχ 2

dm
=−2∑ (

y i−mx i−b

σ i
2 )⋅xi=0

dχ 2

db
=−2∑ (

y i−mx i−b

σ i
2 )=0

m̂=
(∑

y i

σ i
2 )(∑

x i

σ i
2 )−(∑

1

σ i
2 )(∑

x i y i

σ i
2 )

(∑
x i

σ i
2 )

2

−(∑
x i

2

σ i
2 )(∑

1

σ i
2 )

(m̂=
⟨ y ⟩ ⟨ x ⟩−⟨xy ⟩

⟨ x ⟩2−⟨ x2⟩ )

∑ (
y i

σ i
2 )=m ∑ (

xi

σ i
2 )+b∑ (

1

σ i
2 )∑ (

x i y i

σ i
2 )=m∑ (

x i
2

σ i
2 )+b∑ (

x i

σ i
2 )

b̂=
(∑

y i

σ i
2 )−m̂(∑

x i

σ i
2 )

(∑
1

σ i
2 )

 ( b̂=⟨ y ⟩−m̂ ⟨x ⟩ )

(Special case of equal 's.)
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Solution for least squares m and b
There's a nice analytic solution---rather than trying to numerically 
minimize a 2, we can just plug in values into the formulas!  This 
worked out nicely because of the very simple form of the 
likelihood, due to the linearity of the problem and the assumption 
of Gaussian errors.

m̂=
(∑

y i

σ i
2 )(∑

x i

σ i
2 )−(∑

1

σ i
2 )(∑

x i y i

σ i
2 )

(∑
x i

σ i
2 )

2

−(∑
x i

2

σ i
2 )(∑

1

σ i
2 )

(m̂=
⟨ y ⟩ ⟨ x ⟩−⟨xy ⟩

⟨ x ⟩2−⟨ x2⟩ )

b̂=
(∑

y i

σ i
2 )−m̂(∑

x i

σ i
2 )

(∑
1

σ i
2 )

( b̂=⟨ y ⟩−m̂ ⟨x ⟩ )

(Special case of equal errors)
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Errors in the Least Squares Method
What about the errors and correlations between m and b?  
Simplest way to derive this is to look at the chi-squared, and 
remember that this is a special case of the ML method:

−ln L=
1
2

χ 2
=

1
2 ∑ (

y i−mxi−b

σ i
)

2

In the ML method, we define the 1 error on a parameter by the 
minimum and maximum value of that parameter satisfying 
 ln L=½.  

In LS method, this corresponds to 2=+1 above the best-fit point. 
 Two sigma error range corresponds to 2=+4, 3 is 2=+9, etc.

But notice one thing about the dependence of the 2---it is 
quadratic in both m and b, and generally includes a cross-term 
proportional to mb.  Conclusion: Gaussian uncertainties on m and 
b, with a covariance between them.
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Contours and marginalization

Best 
linear fit 
to the 
data

Best fit point

Black ellipse: 
2<+1 from 
best fit

2


2

2 vs b for
fixed value 
of m

2 vs b, 
minimizing 
2  w.r.t. m 
at each 
value of b

2 vs m for
fixed value 
of b

2 vs m, 
minimizing 
2  w.r.t. b 
at each 
value of m
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Errors on each individual parameter

2

To find 1 error on 
any parameter, scan 
over that parameter 
while minimizing the 
2 as a function of all 
other free parameters.

The points at which 
the 2 (minimized with 
respect to all other 
free parameters) has 
increased by +1 from 
its global minimum 
give the 1 errors on 
the parameter.

Do NOT leave the 
other parameters 
fixed at their best-fit 
values while 
scanning!

If minimizing -ln L 
instead of 2, increase 
by +1/2 instead of +1.


2
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
x
=2


y
=1

=0.8

Red ellipse: 
contour with 
 ln L = +0.5

Blue ellipse: 
contour 
containing 
68% of 2D 
probability 
content.

1D vs. 2D confidence regions
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Error contours for multiple parameters
We can also find the errors 
on parameters by drawing 
contours on 
 ln L or 2.

1 range on a single 
parameter a: the smallest 
and largest values of a that 
give  ln L=½, minimizing ln 
L over all other parameters.

But to get joint error 
contours, must use different 
values of  ln L (see Num 
Rec Sec 15.6).  Multiply by 
2 if using 2.

m=1 m=2 m=3
68.00% 0.5 1.15 1.77
90.00% 1.36 2.31 3.13
95.40% 2 3.09 4.01
99.00% 3.32 4.61 5.65
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Two marginalization procedures
Normal marginalization procedure: integrate over nuisance variables:

P  x =∫ dy P  x , y 

Alternate marginalization procedure: maximize the likelihood as a function of 
the nuisance variables, and return the result:

P  x ∝ max
y

P  x , y 

(It is not necessarily the case that the resulting PDF is normalized.)

I can prove for Gaussian distributions that these two marginalization 
procedures are equivalent, but cannot prove it for the general case (In fact 
they give different results).

Bayesians always follow the first prescription.  Frequentists most often use 
the second. 

Sometimes it will be computationally easier to apply one, sometimes the 
other, even for PDFs that are approximately Gaussian.
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Linear least squares and matrix algebra
Least squares fitting really shines in one area: linear 
parameter dependence in your fit function:

y ( x|α⃗ )=∑
j=1

m

α j⋅f j ( x )

In this special case, LS estimators for the  are unbiased, have 
the minimum possible variance of any linear estimators, and can 
be solved analytically, even when N is small, and independent of 
the individual measurement PDFs.†

A ij=[
f 1 ( x1 ) f 2 ( x1 ) . . .

f 1 (x2 ) f 2 ( x2 ) . . .

⋮ ⋮ ⋱
] χ 2= ( y⃗ meas− y⃗ pred )

T⋅V −1⋅( y⃗ meas− y⃗ pred )

†Some conditions apply---see Gauss-Markov theorem for exact statement.

y pred= A⋅⃗

χ 2= ( y⃗ meas− A⋅⃗ )
T⋅V −1⋅( y⃗ meas− A⋅⃗ )
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Linear least squares: exact matrix solution

A ij=[
f 1 ( x1 ) f 2 ( x1 ) . . .

f 1 ( x2 ) f 2 ( x2 ) . . .

⋮ ⋮ ⋱
]

α⃗ = ( AT V −1 A )
−1

AT V −1⋅y⃗

U ij=cov ( α i ,α j )=( AT V −1 A )
−1

Best fit estimator:

Covariance matrix of estimators:

Nice in principle, but requires lots of matrix inversions---rather 
nasty numerically.  Might be simpler to just minimize 2!

y ( x|α⃗ )=∑
j=1

m

α j⋅f j ( x ) y pred= A⋅⃗

χ 2= ( y⃗ meas− A⋅⃗ )
T⋅V −1⋅( y⃗meas− A⋅⃗ )



51

2 values used as a goodness of fit
The dominant use of the 2 statistics is for least squares 
fitting.

The “best fit” values of the parameters  are those that 
minimize the 2.  

If there are m free parameters, and the deviation of the 
measured points from the model follows Gaussian 
distributions, then this statistic often follows a particular 
functional form called a 2 distribution with N-m degrees of 
freedom. 

2 is thus used to test the goodness of the fit.  A good fit will 
have 2 about equal to N-m.
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The 2 distribution

Suppose that you generate N random numbers from a 
Gaussian (normal) distribution with =0, =1:  Z

1
 ... Z

N
.

Let X be the sum of the squared variables:

X=∑
i=1

N

Zi
2

The variable X follows a 2 distribution with N degrees of 
freedom:

P ⟨ χ 2|N ⟩=
2−N /2

Γ ( N / 2 )
( χ 2 )

( N −2 )/ 2
e−χ 2

/ 2

  Recall that (N) = (N-1)! if N is an integer.
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Properties of the 2 distribution
A 2 distribution has 

mean=N, but 
variance=2N.

In the context of 2 fits, this 
means you expect to get a 
2 value about equal to the 
number of degrees of 
freedom in the problem.  

For example, for 10 
degrees of freedom, very 
small chance of getting 2

as large as 20 (bad fit) or 
as low as 3 (fit is too good!) 
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Goodness of fit: an example

Does the data sample, 
known to have 
Gaussian errors, fit 
acceptably to a 
constant (flat line)?

6 data points – 1 free 
parameter = 5 d.o.f.

2 = 8.85/5 d.o.f.

Chance of getting a 
larger 2 is 12.5% for 
5 degrees of freedom: 
an acceptable fit by 
almost anyone's 
standard.

Flat line is a good fit.
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Distinction between goodness of fit and 
parameter estimation

Now if we fit a sloped 
line to the same data, 
is the slope consistent 
with flat?

2 is obviously going 
to be somewhat 
better.

But slope is 3.5 
different from zero!  
Chance probability of 
this is 0.0002.

How can we 
simultaneously say 
that the same data set 
is “acceptably fit by a 
flat line” and “has a 
slope that is 
significantly larger 
than zero”???
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Distinction between goodness of fit and 
parameter estimation
Goodness of fit and parameter estimation are answering two 
different questions.

1) Goodness of fit: is the data consistent with having been drawn
from a specified distribution?

2) Parameter estimation: which of the following limited set of
hypotheses is most consistent with the data?

One way to think of this is that a 2 goodness of fit compares the 
data set to all the possible ways that random Gaussian data 
might fluctuate.  Parameter estimation chooses the best of a 
more limited set of hypotheses.

Parameter estimation is generally more powerful, at the expense 
of being more model-dependent.  

Complaint of the statistically illiterate: “Although you say your 
data strongly favours solution A, doesn't solution B also have an 
acceptable 2/dof close to 1?”
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Limitations of 2 fits
2 /least squared fits are 
based on the 
assumption of Gaussian 
errors.

Beware of using these in 
cases where this doesn't 
apply.

To the left, the black line 
is the fit while the red is 
the true parent 
distribution.

Don’t use least squares 
fits with binned data, 
when bins have few 
events.
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Goodness of fit: ML method
Sadly, the ML method does not yield a useful goodness of fit 
parameter.  This is perhaps surprising, and is not commonly 
appreciated.  

First of all, the quantity that plays the role of the 2 in the 
minimization, -ln(L), doesn't follow a standard distribution.

One sometimes recommended approach is to generate many 
simulated data sets with the same number of data points as your 
real data, and to fit them all with ML.  Then make a histogram of 
the resulting minimum values of -ln(L) from all of the fits.  
Interpret this as a PDF for -ln(L) and see where the -ln(L) value 
for your data lies.  If it lies in the meat of the distribution, it's a 
good fit.  If it's way out on the tail, you can report that the fit is 
poor, and that the probability of getting a larger value of -ln(L) 
than that seen from your data is tiny.

This is a necessary condition to conclude that your model is a 
good fit to your data, but it is not sufficient ...



When to use Least Squares vs. Maximum 
Likelihood

My general advice: use maximum likelihood whenever you 
can.  To use it, you must know how to calculate the PDFs of 
the measurements. But always remember that the ML 
estimators are often biased (although bias is usually 
negligible if N is large).

Consider using least squares if:

 your problem is linear in all parameters, or
 the errors are known to be Gaussian, or else you don't
know the form of the measurement PDFs but only know the
covariances, or
 for computational reasons, you need to use a simplified
likelihood that may have a closed form solution

In general, the ML method has more general applicability, 
and makes use of more of the available information.

And avoid fitting histograms with LS whenever possible.



60

What is a systematic uncertainty?
There are many meanings of the term “systematic uncertainty”.  (I 
prefer this term to “systematic error”, which means more or less the 
same thing.)

The most common definition is “any uncertainty that's not a 
statistical uncertainty”.  

To avoid this definition becoming circular, we'd better be more 
precise.

Perhaps this works: “A systematic uncertainty is a possible 
unknown variation in a measurement, or in a quantity derived from 
a set of measurements, that does not randomly vary from data 
point to data point.”

Usually you see it listed broken out as: 5.0 ± 1.2 (stat) ± 0.8 (sys)



61

Why are systematics problematic for 
frequentists?
The whole frequentist program is based upon treating the outcomes of 
experiments as “random variables”, and predicting the probabilities of 
observing various outcomes.  For quantities that fluctuate, this makes 
sense.

But often we conceive of systematic uncertainties that aren't 
fluctuations.  Maybe your thermometer really IS off by 0.2K, and every 
time you repeat the measurement you'll have the same systematic 
bias.

There's both a conceptual problem and a practical problem here.  
Conceptually, we resort to the dodge of imagining “identical” 
hypothetical experiments, except that certain features of the setup are 
allowed to vary.  Practically, we usually can't measure the size of a 
systematic by repeating the measurement 100 times and looking at 
the distribution.  We're almost forced to be pseudo-Bayesian about the 
whole thing.
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Bayesian approach to systematics
Bayesians lose no sleep over systematics.  Suppose you want to measure 
some quantity .  You have a prior P(), you observed some data D, and 
you need to calculate a likelihood P(D|).  Let's suppose that the likelihood 
depends on some systematic parameter  (which could for example be 
the calibration of your thermometer).  We handle the systematic 
uncertainty by simply treating both  and  as unknown parameters, 
assign a prior to each, and write down Bayes theorem:

In the end we get a joint distribution for , whose value we care about, and 
for , which may be uninteresting.  We marginalize by integrating over 
to get P().

The prior P() presents our prior knowledge of and is often the result of 
a calibration measurement.

Note that since the likelihood P(D|) depends on as well, it can 
provide additional information on 
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Error-weighted averages
Suppose you have N independent measurements of a quantity. 
You average them.  The proper error-weighted average, and its 
variance, are:

⟨ x⟩=
∑ xi/σ i

2

∑ 1 /σi
2

V (⟨ x ⟩ )=
1

∑ 1 / σ i
2

If all of the uncertainties are equal, then this reduces to the simple 
arithmetic mean, with V(x) = V(x)/N.
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Bayesian derivation of error-weighted 
averages

Suppose you have N independent measurements of a quantity, 
distributed around the true value  with Gaussian distributions. 
For flat prior on  we get: 

V (⟨ x ⟩ )=
1

∑ 1 / σ i
2

P ⟨μ|x⃗ ⟩ ∝∏
i

exp [− 1
2 (

xi− μ

σ i
)

2

]=exp [− 1
2 ∑

i
(

x i−μ

σ i
)
2

]
It's easy to see that this has the form of a Gaussian.  To find its 
peak, set derivative with respect to  equal to zero.

dP
dμ

=exp [− 1
2
∑

i
(

x i−μ

σ i
)

2

][∑i (
x i−μ

σ i
2 )]=0   →     μ=

∑ x i/σ i
2

∑ 1 /σ i
2

Calculating the coefficient of 2 in the exponent yields:
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Averaging correlated measurements
We already saw how to average N independent measurement.
What if there are correlations among measurements?

For the case of uncorrelated Gaussianly distributed 
measurements, finding the best fit value was equivalent to 
minimizing the chi-squared:

χ2=∑
i

(
xi−μ

σ i
)

2

In Bayesian language, this comes about because the PDF for  is 
exp(-2/2).  Because we know that this PDF must be Gaussian:

P ( μ )∝exp [− 1
2 (

μ−μ0

σ μ
)

2

]
then an easy way to find the 1 uncertainties on  is to find the 
values of  for which 2 = 2

min
 + 1.
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Averaging correlated measurements II
The obvious generalization for correlated uncertainties is to form 
the 2including the covariance matrix:

χ2=∑
i

∑
j

( x i−μ ) (x j− μ ) (V −1 )ij

We find the best value of  by minimizing this 2 and can then 
find the 1 uncertainties on  by finding the values of  for which 
 2 = 2

min
 + 1.

This is really parameter estimation with one variable.

The best-fit value is easy enough to find:

μ=
∑
i,j

x j (V−1 ) ij

∑
i,j

(V −1 )ij
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Averaging correlated measurements III
Recognizing that the 2 really just is the argument of an 
exponential defining a Gaussian PDF for  ...

χ2=∑
i

∑
j

( x i−μ ) (x j− μ ) (V −1 )ij

we can in fact read off the coefficient of 2, which will be 1/V():

σ μ
2=

1

∑
i,j

( V −1 )ij

V=[
σ 1

2 0 ⋯ 0

0 σ 2
2 0

⋮ ⋮

0 0 ⋯ σ n
2 ]+[

σ sys
2 σ sys

2 ⋯ σ sys
2

σ sys
2 σ sys

2 σ sys
2

⋮ ⋮

σ sys
2 σ sys

2
⋯ σ sys

2 ]
For a systematic that affects all data points equally, V is:
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Averaging correlated measurements IV
Suppose that we have N 
correlated measurements.  Each 
has some independent error 
=1 and a common error b that 
raises or lowers them all 
together.  (You would simulate 
by first picking a random value 
for b, then for each 
measurement picking a new 
random value c with RMS  and 
writing out b+c. 

Each curve shows how the error 
on the average changes with N, 
for different values of 

b
.

b=1
b=0.5
b=0.25
b=0
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The error propagation equation
Let f(x,y) be a function of two variables, and assume that the 
uncertainties on x and y are known and “small”.  Then:

σ f
2=( df

dx )
2

σ x
2+( df

dy )
2

σ y
2 +2( df

dx )( df
dy ) ρσ x σ y

The assumptions underlying the error propagation equation are:

covariances are known
 f is an approximately linear function of x and y over the span of
x±dx or y±dy.

The most common mistake in the world: ignoring the third term. 
Intro courses ignore its existence entirely!
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Averaging correlated measurements: example
Consider the following example, adapted from Glen Cowan's book*:

We measure an object's length with two rulers.  Both are calibrated to be 
accurate at T=T

0
, but otherwise have a temperature dependency: true length y is 

related to measured length by:

We assume that we know the c
i
 and the uncertainties, which are Gaussian.  We 

measure L
1
, L

2
, and T, and so calculate the object's true length y.

y i =Li +c i (T −T 0 )

We wish to combine the measurements from the two rulers to get our best estimate of 
the true length of the object.

* “Statistical Data Analysis”, by Glen Cowan (Oxford, 1998)

y i =Li +c i (T −T 0 )
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Averaging correlated measurements: example
We start by forming the covariance matrix of the two measurements:

y i =Li +c i (T −T 0 ) σ i
2 =σ L

2 +c i
2 σT

2

We use the method previously described to calculate the weighted average for the 
following parameters:

c
1
 = 0.1 L

1
=2.0 ± 0.1 y

1
=1.80 ± 0.22 T

0
=25

c
2
 = 0.2 L

2
=2.3 ± 0.1 y

2
=1.90 ± 0.41 T = 23 ± 2

Using the error propagation equations, we get for the weighted average:

y
true

 = 1.75 ± 0.19

WEIRD: the weighted average is smaller than either measurement!  What's going 
on??

cov ( y1 ,y 2 ) =c1 c2 σT
2
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Averaging correlated measurements: example

Because y
1
 and y

2
 

disagree, fit 
attempts to adjust 
temperature to 
make them agree. 
This pushes fitted 
length lower.

This is one of 
many cases in 
which the data 
itself gives you 
additional 
constraints on the 
value of a 
systematic (here, 
what is the true T).
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Constraint terms in the likelihood
Working in Bayesian language, the posterior PDF is given by

P (θ,α |D ) ∝ P (θ ) P ( α ) P ( D|θ,α )

We saw previously that the ML estimator is same thing as the mode of the 
Bayesian posterior PDF assuming a flat prior on .  In that case we 
maximized ln L()=ln P(D|,I), and use the shape of ln L to determine the 
confidence interval on .

This easily generalizes to include systematics by considering the 
nuisance parameters  to simply be more parameters we're trying to 
estimate:

ln L (θ,α )= ln L (θ|D,α )+ ln P ( α )

The first term is the regular log likelihood---a function of , with  
considered to be a fixed parameter.  The second term is what we call the 
constraint term---basically it's the prior on .
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Application of constraint terms in likelihood
Remember the problem in which we measured an object using two rulers 
with different temperature dependencies?

y=Li +ci (T −T 0 )

c
1
 = 0.1 L

1
=2.0 ± 0.1 y

1
=1.80 ± 0.22 T

0
=25

c
2
 = 0.2 L

2
=2.3 ± 0.1 y

2
=1.90 ± 0.41 T = 23 ± 2

ln L (θ,α )= ln L (θ|D,α )+ ln P ( α )

− ln L ( y,T )=
1
2 ∑

i=1

2

(
y− Li−c i (T −T 0 )

σ L
)
2

+
1
2 (T −23

2 )
2

The first term of the likelihood is the usual likelihood containing 
“statistical errors” on the L

i
, with T considered fixed.  The 

second is the constraint term (think: “prior on T”).  The joint 
likelihood is a function of the two unknowns y and T.

Marginalization procedure: minimize over T to get shape of 
likelihood as function of y.
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Constraint terms in likelihood: results

TT

Top plot is shape of 
likelihood as function of y, 
after marginalizing over T:

Red: T fixed (stat error only)
Black: after minimizing -ln(L) 
as function of T at each y
1 range: same as 
covariance matrix approach

Blue: “a priori” constraint on 
T (23±2).
Magenta: shape of likelihood 
as a function of T, after 
marginalizing over y.
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How to report systematics
In reality there is no deep fundamental distinction between statistical and 
systematic errors.  (Bayesians will say that both equally reflect our 
uncertainty about the universe.)  Nonetheless, it is traditional, and useful, 
to separately quote the errors, such as X = 5.2 ± 2.4(stat) ± 1.5(sys).

There is a common tendency to assume that statistical and systematic 
uncertainties will be uncorrelated.  This is often the case, but not always.  
(For example, if the data itself is providing a meaningful constraint on the 
nuisance parameter, there will likely be a correlation.)  If such a 
correlation exists, report it explicitly (maybe as contour plots of X vs. the 
nuisance parameters).  Otherwise you can be sure that someone is going 
to take your data, add the errors in quadrature, and report

X= 5 . 2± √2 . 4 2 + 1 . 5 2=5 . 2±2 . 8

Consider making the full form of the joint likelihood (or the priors and 
posterior PDFs if it's a Bayesian analysis) publicly available---on the web, 
if it won't fit in the paper itself.
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A simple recipe that usually will work
1) Build a quantitative model of how your likelihood function depends on
the nuisance parameters.

2) Form a joint negative log likelihood that includes both terms for the
data vs. model and for the prior on the nuisance parameter.

3) Treat the joint likelihood as a multidimensional function of both physics
parameters and nuisance parameters, treating these equally.

4) Minimize the likelihood with respect to all parameters to get the best-
fit.

5) The error matrix for all parameters is given by inverting the matrix of
partial derivatives with respect to all parameters (good fitting software will
do this for you):
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For More Information

Notes from my graduate level data analysis course:

http://www.phas.ubc.ca/~oser/p509/
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Bayes' Theorem

P ( H |D,I )=
P ( H |I ) P ( D|H,I )

P ( D|I )

H = a hypothesis (e.g. “SUSY 
exists at the TeV scale”)
I = prior knowledge or data 
about H
D = the data

P(H|I) = the “prior probability” 
for H

P(D|H,I) = the probability of 
measuring D, given H and I.  
Also called the “likelihood”

P(D|I) = a normalizing 
constant: the probability that D 
would have happened 
anyway, whether or not H is 
true.

Note: you can only calculate 
P(D|I) if you have a 
“hypothesis space” you're 
comparing to.  A hypothesis is 
only “true” relative to some set 
of alternatives.

This just follows from laws of 
conditional probability---even 
frequentists agree, but they give it a 
different interpretation.
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Example: Triple Screen Test

The incidence of Down's syndrome is 1 in 1000 births.  A triple screen 
test is a test performed on the mother's blood during pregnancy to 
diagnose Down's.  The manufacturer of the test claims an 85% detection 
rate and a 1% false positive rate.

You (or your partner) test positive.  What are the chances that your child 
actually has Down's?
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Discussion: Triple Screen Test

The incidence of Down's syndrome is 1 in 1000 births.  A triple screen 
test is a test performed on the mother's blood during pregnancy to 
diagnose Down's.  The manufacturer of the test claims an 85% detection 
rate and a 1% false positive rate.

You (or your partner) test positive.  What are the chances that your child 
actually has Down's?

Consider 100,000 mothers being tested.  Of these, 100,000/1000=100 
actually carry a Down's child, while 99,900 don't.  For these groups:

85 are correctly diagnosed with Down's.
15 are missed by the test
    999 are incorrectly diagnosed with Down's
98901 are correctly declared to be free of Down's

Fraction of fetuses testing positive who really have the disorder:
 85/(85+999) = 7.8%
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Bayes' Theorem applied
to Down's syndrome
screening

P ( H |D,I )=
P ( H |I ) P ( D|H,I )

P ( D|I )

Hypothesis H: fetus has 
Down's syndrome

Data D = a positive test result

P(H|I) = the “prior probability” 
for H = 0.001 (rate in general 
population)

P(D|H,I) = the probability of 
measuring D, given H and I.  
Also called the “likelihood”.  
P(D|H,I)= 0.85 in this case

P(D|I) = a normalizing 
constant: the probability that D 
would have happened 
anyway, whether or not H is 
true.

= 0.001 x 0.85 + 0.999 x 0.01

= P(H) P(D|H) + P(~H) P(D|~H)

P ( H|D,I )=
0.001×0. 85

0. 001×0. 85+0.999×0. 01

P ( H |D,I )=0 . 078
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Goodness of fit for least squares
By now you're probably wondering why I haven't discussed the 
use of 2 as a goodness of fit parameter.  Partly this is because 
parameter estimation and goodness of fit are logically separate 
things---if you're CERTAIN that you've got the correct model and 
error estimates, then a poor 2 can only be bad luck, and tells 
you nothing about how accurate your parameter estimates are.

Carefully distinguish between:

1) Value of 2 at minimum: a measure of goodness of fit
2) How quickly 2 changes as a function of the parameter: a 
measure of the uncertainty on the parameter.

Nonetheless, a major advantage of the 2 approach is that it 
does automatically generate a goodness of fit parameter as a 
byproduct of the fit.  As we'll see, the maximum likelihood 
method doesn't.

How does this work?
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2 as a goodness of fit parameter
Remember that the sum of N Gaussian variables with zero mean 
and unit RMS, when squared and added, follows a 2 distribution 
with N degrees of freedom.  Compare to  the least squares 
formula:

χ2=∑
i

∑
j

( y i− f ( x i|α ) ) ( y j− f ( x j|α ) ) ( V −1 )ij

If each y
i
 is distributed around the function according to a 

Gaussian, and f(x|) is a linear function of the m free 
parameters , and the error estimates don't depend on the free 
parameters, then the best-fit least squares quantity we call 2 
actually follows a 2 distribution with N-m degrees of freedom.

People usually ignore these various caveats and assume this 
works even when the parameter dependence is non-linear and 
the errors aren't Gaussian.  Be very careful with this, and check 
with simulation if you're not sure.
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Nuisance parameters
A “nuisance parameter” is a parameter model that affects the 
probability distributions but which we don't care about for its own 
sake.  An example would be a calibration constant of an 
apparatus---not the sort of thing you report in the abstract, but 
important nonetheless.

Bayesian analysis gives a simple procedure for handling these: 
assign priors to all parameters, calculate the joint posterior PDF 
for all parameters, then marginalize over the unwanted 
parameters.

If  is an interesting parameter, while  is a calibration constant, 
we write:

P (θ|D,I )=∫ d αP (θ,α|D,I )=∫ d α [ P ( α|I ) P ( θ|I ) P ( D|θ,α,I )

P ( D|I ) ]
(I've assumed independent priors on  and , but this is not necessary.)
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Systematic uncertainties

Nuisance parameters provide an obvious way to include 
systematic uncertainties.  Introduce a parameter characterizing 
the systematic, specify a prior for the true values of that 
systematic, then integrate over the nuisance parameter to get 
the PDF for the quantity you do care about.

The frequentist version is much nastier---without the language of 
a “prior”, the marginalization procedure, and the philosophy of 
treating the data as generating a PDF for the parameters, it's 
much harder to handle systematics.  

P (θ|D,I )=∫ d αP (θ,α|D,I )=∫ d α [ P ( α|I ) P ( θ|I ) P ( D|θ,α,I )

P ( D|I ) ]
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Propagating systematics with Monte Carlo
So you've listed all of the systematics, mapped them all to nuisance 
parameters (or decided that they're negligible), and have assigned PDFs 
to each nuisance parameter.  What next?

“Propagating the systematics” means to determine how much uncertainty 
results in your final value from your systematics model.  Toy Monte Carlo 
is an excellent way to do evaluate this:

1) Randomly choose values for each nuisance parameter according to 
their respective PDFs.
2) Analyze the data as if those values of the nuisance parameters are the 
true values for the systematic parameters.
3) Repeat many times.
4) If you're trying to estimate the error on a fit parameter, plot the 
distribution of the fitted values of that parameter.  Take the RMS width as 
the systematic error.
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Propagating systematics with Monte Carlo 2
Advantages of the Monte Carlo method:
 few approximations made---no need to assume Gaussian errors
 considers the effects of all systematics jointly, including nonlinearities
 can easily accommodate correlations between systematics

Disadvantages of the Monte Carlo method:
 method does not allow the data itself to constrain the systematics 
 because all systematics are varied at once, the resulting distribution is 
the convolution of the effects of all nuisance parameters.  On the one 
hand this is a feature---in real life all systematics vary at once, and so 
Monte Carlo gives an “exact” way of modelling how various systematics 
interact.  On the other hand, if you want to understand the relative 
importance of each component, you have to either marginalize or project 
over each parameter, or rerun your Monte Carlos, this time varying just 
one systematic at a time.  (Actually, this is recommended practice in any 
case.)



89

An involved example: estimating a 
superconductor's critical temperature

Superconductor has sudden 
drop in resistivity below its 
critical temperature.  Model 
it as:

R = B (if T<T
c
)

R = B+A(T/T
c
)3 (if T>T

c
)

Here B is a calibration 
offset, T

c 
is the critical 

temperature, and A is an 
uninteresting material 
parameter.

Data at right drawn from 
true distribution shown in 
red.
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Superconductor: define the model
There are three parameters, only one of which we really 
care about.  Let's assume uniform priors for each:

P(B) = 1  (0<B<1)
P(A) = 1  (0<A<1)
P(T

c
)=1/20 (0<T

c
<20)

And now we define the model.  The model will be that the 
data are scattered around the theoretical curve

R = B (if T<T
c
)

R = B+A(T/T
c
)3 (if T>T

c
)

with Gaussian errors having =0.2 (we assume this is 
known from characterization of the apparatus).
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Superconductor: the form of the likelihood
Need to write down a form for P(D|A,B,T

c
,I)

where R(T
i
) is the piecewise-defined function given previously.  

All the dependence on model parameters is contained in R(T).

Bayes theorem now immediately defines a joint PDF for the 
parameters by

P ( A,B,T c|D,I )∝ P ( A,B,T c|I ) P ( D|A,B,T c ,I )

All there is left to do is to normalize the PDF, and marginalize 
over the unwanted variables to get the PDFs on any parameter 
you care about. 

P ( D|A,B,T c ,I )=∏
i=1

N

exp[− 1

2 σ 2 ( D i−R ( T i ))
2]
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Superconductor: marginalized PDFs

Here I show the marginalized 
PDFs for T

c
, A, and B.  A is 

perhaps like you would have 
expected.  B is OK---low, but 
data was quite a bit low as 
well.

(True values: A=0.2, B=0.2, 
T

c
=10)

PDF for T
c 
puzzled me at 

first. It spikes near true value, 
but is not very smooth.  The 
reason is that the model 
being fitted is discontinuous, 
so you get discontinuities at 
the data points.
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Systematic error model #1: an offset
Suppose we take N measurements from a distribution, and wish to 
estimate the true mean of the underlying distribution.

Our measuring apparatus might have an offset s from 0.  We 
attempt to calibrate this.  Our systematic error model consists of:

1) There is some additive offset s whose value is unknown.
2) It affects each measurement identically by x

i
 → x

i
+s.

3) The true mean is estimated by:

4) Our calibration is s = 2 ± 0.4

=( 1
N ∑

i=1

N

xi)− ŝ μ
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Covariance matrix approach
 In the “covariance matrix” approach, you treat the nuisance parameter s 
and the data values x

j
 as a set of correlated random variables.  You then 

calculate their full covariance matrix, and use error propagation to 
estimate the uncertainties.

Ex. taking the average of a set of measurements with a systematic 
additive offset:

(Implicitly assuming X
j
 is independent of s).

You can think of this as the sum of two covariance matrices:

     V
tot

 = V
stat

 + V
sys

x j =μ+X j +s

cov ( x i ,x j )=cov ( μ+X i +s,μ+X j +s )=cov ( X i ,X j )+cov ( s,s )
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Covariance matrix approach 2

Now just include the new covariance matrix in your analysis 
wherever you previously had just the statistical error 
covariances---e.g.

χ2 (θ )=∑
i=1

N

∑
j=1

N

( y i− f ( x i|θ )) V ij
−1

( y j−f ( x j|θ ) )
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Errors on ML estimators
In the limit of large N, the 
log likelihood becomes 
parabolic (by CLT).  
Comparing to ln(L) for a 
simple Gaussian:

it is natural to identify the 
1 range on the parameter 
by the points as which 
 ln(L)=½.

2 range:  ln(L)=½(2)2=2
3 range:  ln(L)=½(3)2=4.5

This is done even when the 
likelihood isn't parabolic 
(although at some peril).

−ln L=L0+
1
2 (

f −⟨ f ⟩

σ f
)
2
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Distinction between statistical and systematic 
uncertainties

A common set of definitions:

A “statistical uncertainty” represents the scatter in a parameter 
estimation caused by fluctuations in the values of random variables. 
 Typically this decreases in proportion to 1/√N.

A “systematic uncertainty” represents a constant (not random) but 
unknown error whose size is independent of N.

DO NOT TAKE THESE DEFINITIONS TOO SERIOUSLY.  Not all 
statistical uncertainties decrease like 1/√N.  And more commonly, 
taking more data can decrease a systematic uncertainty as well, 
especially when the systematic affects different parts of the data in 
different ways, as in the example on the previous page.
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Need to have a systematics model 
The most important step in dealing with any systematic is to have a 
quantitative model of how it affects the measurement.  This 
includes:

A.  How does the systematic affect the measured data points
      themselves?
B.  How does the systematic appear quantitatively in the
     calculations applied to the data?

It is essential to have some model, however simplified, in order to 
quantify the systematic uncertainty.
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Advantages of a Bayesian approach

If you start with some probability distribution for the value of a 
parameter, or an estimate of the likelihood of a hypothesis, and 
then you learn some new piece of information (“the data”), Bayes' 
theorem immediately tells you how to update your distribution.

The strongest benefit of Bayesian statistics is that it directly 
answers the question you're really asking: how likely is your 
hypothesis?  For example, you can calculate probabilities for things 
like: what is the probability that there's a new particle with a mass 
between 200-205 GeV?

You can ONLY directly calculate the odds of a hypothesis being 
true if you assume some prior, and if your interpretation of 
probability allows you to think of probability as a measure of 
credibility (rather than just frequency).
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Practical advantages of a Bayesian approach
Using Bayes theorem has a number of practical advantages:

1)  It's conceptually simple.  Every problem amounts to:
       A. list all of the possible hypotheses
       B. assign a prior to each hypothesis based upon what you
           already know
       C. calculate the likelihood of observing the data for each
            hypothesis, and then use Bayes' theorem
2)  It gives an actual probability estimate for each hypothesis
3)  It makes it easy to combine different measurements and to include
     background information
4)  It's guaranteed to be self-consistent and in accord with 
      “common sense” 
5)  It makes handling systematic errors very easy

But the whole thing fails if you don't know how to do A or B.  In that case, 
you probably fall back on frequentist alternatives.  These use only C, but 
at a cost: they cannot directly tell you the relative probabilities of different 
hypotheses.
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