
Thomas McElroy

Introduction to UNIX and High 
Performance Computing
Let’s hack the mainframe!



Goal of lecture

• Get you to a point where you are comfortable logging onto the computer that you will use 
for research


• Confident in basic file navigation commands


• Make you aware of a number of functions and programs to make your life easier


• Give you knowledge as to how to work on a cluster.


• We will not have time to go into great depth on any subject but I will as much as possible 
point you to good resources for further information.


•

2



Step One
Have a Computer?

Yes

Windows

No

Mac Linux

You have done bad and 
you should feel bad.

Good job, sit tightAlright fan person,


I will get to you in a second

You poor poor person.


Alright, let’s get you sorted

3



Windows
For almost all of you it will be most advantageous to install Ubuntu within the 


Windows Subsystem for Linux. 

Hopefully you are a keener and have looked at the slides ahead of time and 
followed this link to get it setup on your own 

https://docs.microsoft.com/en-us/windows/wsl/install-win10

It will actually take too long to do it here soooo…. 


you’re still on your own.

and
https://www.makeuseof.com/tag/linux-desktop-windows-subsystem/

4

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.makeuseof.com/tag/linux-desktop-windows-subsystem/


Windows
Compiling ROOT on WSL, follow the instructions here: 

https://medium.com/@blake.leverington/installing-cern-root-under-windows-10-with-
subsystem-for-linux-beta-75295defc6d4 
With a few modifications: 

-first, make sure you have the python libraries: 


apt-get  install -y python3 python3-dev python3-pip 

-Get the source files from the GitHub repository so that you get the latest version (not wget):


git clone https://github.com/root-project/root.git


-Also build without XROOTD 


cmake -Dxrootd=OFF -Dbuiltin_xrootd=OFF ../root


To make the build a little faster you can use more cores with


make -jN (replace N with number of cores to use)

5

https://medium.com/@blake.leverington/installing-cern-root-under-windows-10-with-subsystem-for-linux-beta-75295defc6d4
https://medium.com/@blake.leverington/installing-cern-root-under-windows-10-with-subsystem-for-linux-beta-75295defc6d4
http://www.apple.com
https://github.com/root-project/root.git


Mac
Good job! You at least have an operating system with an underlying UNIX kernel.

Did you remember to install Xcode and command line tools so you can make use of it?

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/

Again, too slow to do with you but it works.

You will also want to make sure you have XQuartz installed for X11

https://www.xquartz.org/

6

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
https://www.xquartz.org/


Docker

• A computer inside another computer…..


• https://www.docker.com/ to get docker software.


• https://hub.docker.com/repository/docker/thomasmcelroy/saporientation


• This is a large file…. It contains a whole operating system.


• Contains all the good stuff.


7

http://www.docker.com
https://hub.docker.com/repository/docker/thomasmcelroy/saporientation


Docker in Windows (must have Pro)

• Open a terminal window (Command Prompt or PowerShell)


• > docker run thomasmcelroy/saporientation


• Once inside docker container type source env.sh to get ROOT


• Look into how to mount folders from your computer to folder in the docker 
container as well as getting graphical interfaces forwarded.


• http://somatorio.org/en/post/running-gui-apps-with-docker/ (graphics)


• https://www.digitalocean.com/community/tutorials/how-to-share-data-
between-the-docker-container-and-the-host (volumes)

8

http://somatorio.org/en/post/running-gui-apps-with-docker/
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-the-docker-container-and-the-host
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-the-docker-container-and-the-host


Docker on Mac
Ya, pretty much the same…

• Open a terminal window 


• $ docker run -it thomasmcelroy/saporientation


• Once inside docker container type source env.sh to get ROOT


• Look into how to mount folders from your computer to folder in the docker 
container as well as getting graphical interfaces forwarded.


• http://somatorio.org/en/post/running-gui-apps-with-docker/ (graphics)


• https://www.digitalocean.com/community/tutorials/how-to-share-data-
between-the-docker-container-and-the-host (volumes)

9

http://somatorio.org/en/post/running-gui-apps-with-docker/
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-the-docker-container-and-the-host
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-the-docker-container-and-the-host


Connecting using Putty on Windows

• Get Putty and XMing (or VcXsrv) 


• https://sourceforge.net/projects/xming/


• https://www.putty.org/


• Start XMing


• In putty turn on X11 forwarding (Putty Configuration ->Connection->SSH->X11)


• SSH keys can be generated with PuttyGen


• https://support.hostway.com/hc/en-us/articles/115001509884-How-To-Use-SSH-
Keys-on-Windows-Clients-with-PuTTY-

10

https://sourceforge.net/projects/xming/
https://www.putty.org/
https://support.hostway.com/hc/en-us/articles/115001509884-How-To-Use-SSH-Keys-on-Windows-Clients-with-PuTTY-
https://support.hostway.com/hc/en-us/articles/115001509884-How-To-Use-SSH-Keys-on-Windows-Clients-with-PuTTY-


Connecting to remote computer.

 

Since many of you will primarily be working on remote clusters,  let’s get connected first. 

You need: a username, a password and the address of remote computer. 

Example you ask?

Username: thomasmcelroy 
Password: ….. ah nice try 
Address: somecomputer.ca

Now you can open a secure shell (ssh):

Forwards graphical things to your computer. 
Make sure you have X11 (XQuarts for Mac) 
installed.

11

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://somecomputer.ca


Connecting to remote computer.

 

Since many of you will primarily be working on remote clusters,  let’s get connected first. 

You need: a username, a password and the address of remote computer. 

Example you ask?

Username: thomasmcelroy 
Password: ….. ah nice try 
Address: somecomputer.ca

Now you can open a secure shell (ssh):

This selects a port to access the computer 
through. This is not usually needed for 
connecting directly to a computer since port 
22 is the default ssh port. It is needed if you 
are accessing a computer hidden on an 
internal network that is port forwarding you 
to the computer you want. If you need it you 
will be told.

12

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://somecomputer.ca


Connecting to remote computer.

 

000.000.000.000

Input password

13

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Connecting to remote computer.

 

000.000.000.000

Get it wrong

14

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Connecting to remote computer.

 

000.000.000.000

Input correct password

15

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Connecting to remote computer.

 

000.000.000.000

Your computer saying hello, 
some nag more than others.

16

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Connecting to remote computer.

 

000.000.000.000

Pay attention here if it tells you it 
couldn’t create some 
autogenerated file. This usually 
means you have overfilled your 
home directory. Delete some 
stuff and relogin. Also, use your 
scratch disk space (will explain 
later).

17

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Connecting to remote computer.

 

000.000.000.000

We are in! We hacked the mainframe!


But seriously, who uses passwords 
anymore?


Backup. Let’s get out of here.

18

https://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/


Generating an ssh key

close ssh, also closed 
when the terminal window 
is closed

19

000.000.000.000



Generating an ssh key

Creates an ssh key 
unique to your computer

20

000.000.000.000



Generating an ssh key

Hit enter for default

21

000.000.000.000



Generating an ssh key

If you are asked this then 
you already have one…..

22

000.000.000.000



Generating an ssh key

For extra security, I have 
not used it…. Don’t hack 
me.

23

000.000.000.000



Generating an ssh key
This folder will also be created. 
Note: the “.” as a file’s or 
folder’s fist character makes it 
hidden to standard file 
browsers including the default 
ls command (need ls -a).

24



Generating an ssh key

Copy this, then exit

[esc] :q

25



Generating an ssh key

Reconnect to the remote computer and create another 
ssh key for that computer if one doesn’t already exit. 
Enter the .ssh folder and open or create the file 
authorized_keys. 

26



Generating an ssh key

Paste it in.

[i] (to allow you to start typing)


Paste, append to end if keys already exist


[esc] :wq (write and the exit)

You shouldn’t be asked for a password on future connections.

27



Round 1 of useful UNIX commands

• “.” Stands for current directory, “..” Stands for one directory back. “~” Reference your 
home directory


• cd - change directory


• If “/“ is first character in directory name then it looks at the start of the file system, 
otherwise it starts in current directory


• mkdir - makes a new directory (does not enter directory! Must use cd after.)


• cp - copy one file to a new location while keeping the original.


• mv - move a file to a new location, removing the previous file (be careful!)


• rm - remove file, also be careful. Will discuss safety with this command later.

28



VIM

• Easily mistaken for plain vi (vim is often alias to vi)


• Takes a bit more learning to master but once you get the hang of it, it 
becomes a very useful light weight editor that is usually installed everywhere.


• Good resources for command (https://michaelgoerz.net/refcards/vimqrc.pdf)


• There are two main modes, command mode where you are telling VIM how to 
handle the document (write, exit, goto line….) and editing (insert or replace). 


• Writing more is entered by hitting i or r and returned to command mode with 
[esc].

30

https://michaelgoerz.net/refcards/vimqrc.pdf


VIM 

• VIM can be tailored to your preferences using a .vimrc file.


• Good resource for setting this up (https://dougblack.io/words/a-good-
vimrc.html)


• Good first start is provided in course unix course materials (we will pull it from 
the git repository soon)

31

https://dougblack.io/words/a-good-vimrc.html
https://dougblack.io/words/a-good-vimrc.html
https://dougblack.io/words/a-good-vimrc.html
https://dougblack.io/words/a-good-vimrc.html


VIM - the wold I never knew existed

• VIM is a big deal and an odd flex for programmers


• I asked my software engineer brother for a nice .vimrc file to share and I was quickly 
thrown into a world of plugins that I had never heard of…


• I have posted the “simple” .vimrc that he provided but it will take a few steps to use


• Need to install vundle (https://github.com/VundleVim/Vundle.vim)


• And then run: vim +PluginInstall +qall


• Based on what is installed on your system you might need to remove some plugins 
(YouCompleteMe didn’t work with my python3)

* don’t dive into this until you have a good grasp of basic vim

32

https://github.com/VundleVim/Vundle.vim


Emacs

• This is editor requires the ability to view GUI interfaces. 


• Acts more like a standard text editor. 


• Has a command bar for saving and exiting.


• Can also customize with an initialization file. (https://www.gnu.org/software/
emacs/manual/html_node/emacs/Init-File.html)


• Emacs is not default on a lot of distributions and might not be on every 
cluster.

33

https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html


Nano

• Happy medium between vim and emacs. 


• Most useful command always displayed at bottom of editor


• Installed by default on most distributions.


• Good tutorial (https://www.howtogeek.com/howto/42980/the-beginners-
guide-to-nano-the-linux-command-line-text-editor/)


• Customized by creating a .nanorc (https://linuxhint.com/
configure_nano_text_editor_nanorc/)

34

https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/
https://linuxhint.com/configure_nano_text_editor_nanorc/
https://linuxhint.com/configure_nano_text_editor_nanorc/
https://linuxhint.com/configure_nano_text_editor_nanorc/


Non command line editors

• There are a number of good editors depending on operating system 


• My preferred editor is sublime because it is good and works on linux, Mac 
and Windows. 


• There is also a new git client version, I have not used but looks good. 


• Free version works well but will often ask you to buy (can just ignore)


• Again, remember to configure your tab key.


• If on windows, also make sure that the end of line character is properly set or 
files will not work properly on unix. 

35



Other useful text commands

• cat - good for quickly viewing simple text files. Can also combine files.


• More here: https://www.geeksforgeeks.org/cat-command-in-linux-with-
examples/


• diff- looks through two files and displays the difference. 


• More here: https://www.geeksforgeeks.org/diff-command-linux-examples/


• grep - searches files for matches in text.


• More here: https://www.geeksforgeeks.org/grep-command-in-unixlinux/

36

https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/cat-command-in-linux-with-examples/
https://www.geeksforgeeks.org/diff-command-linux-examples/
https://www.geeksforgeeks.org/grep-command-in-unixlinux/


Git
Let’s get some stuff and play with it.

• Git is a version control system. 


• Keeps track of changes to code and manages combining files being worked 
on by different people.


• Almost all physics projects will use this to manage code. (really old projects 
might be using svn, but we won’t get into that)


• Git allows you to create your own “branch” of the code to develop and then 
merge it back into the master code when you have everything functioning.


• There are also a number of git repositories on the internet have loads of useful 
code (github, gitlab, bitbucket)

37



Git
Lets start by grabbing a repository

Git command

Sub command

repository address

Where to put it, (name of repository is the default)

38



Git
Lets make a branch to track our own work

Enter repository folder

39

000.000.000.000



Git
Lets make a branch to track our own work

Create new Branch

40

000.000.000.000



Git
Lets make a branch to track our own work

List branches

41

000.000.000.000



Git
Lets make a branch to track our own work

Switch to your branch

42

000.000.000.000



Git
Make a change and commit your changes locally

Make changes

43



Git
Make a change and commit your changes locally

Commit the changes locally

44



Git
Make a change and commit your changes locally

Must give a message, 
git will open the default 
text editor for you to 
write the comment, if 
you don’t it won’t 
commit. You can also 
use -m “message” for 
short comments.

45



Git
Now to make use of file backup, regularly (daily) push your changes to the remote 
repository

Push current branch to 
usual place online

46



Git
Now to make use of file backup, regularly (>daily) push your changes to the remote 
repository

First push of this 
branch so we need to 
first set up branch on 
remote repository. Git 
is usually pretty good 
with telling you that 
you messed up and 
what to do.

47



Git
Once you have finished your changes to the code you will want to merge it into the 
master branch.

If you have been working for a long time and master branch has changed since you 
branched from it, you should always pull the master branch changes into your branch 
and double check that things are all working.

If there were changes in the master branch you would be informed if there were non-
mergeable changes that you would need to deal with. Once all the changes have been 
made you recommit and push. The merge request is best done from the repository 
website.

48



Git
Some extra things
• git fetch - this will get information on remote branches but will not pull the 

changes.


• git pull - this will pull remote changes of current branch


• git pull origin/<branch> will pull changes of <branch>


• Git stash - saves the changes to the branch locally. Use if you want to 
temporarily go back to a previous version.


• Git reset - reset the code to the last version online (can also go back the 
specific version) user git reset —hard to force override any changes without 
stashing.

Online documentation: https://git-scm.com/

49

https://git-scm.com/


Other file download / transfer

• Wget, commonly used to retrieve code that you are not expected to change.


•  https://www.webhostface.com/kb/knowledgebase/examples-using-wget/


• SCP (secure copy) like ssh but just transfers files.

retrieve

send

~ reference home directory of user
More info: https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/

50

https://www.webhostface.com/kb/knowledgebase/examples-using-wget/
https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/


Other file download / transfer

• You can also use SSHFS to mount a remote disk for more direct access.


• On linux you install sshfs, on Mac osxfuse and sshfs and Windows WinFsp and SSHFS-Win. 


• A folder is created to mount the remote folder to


• Sshfs uses ssh to communicate and transfer files. 


• sshfs tmcelroy@000.000.000.000:/home/tmcelroy /Users/tmcelroy/office/


• More information here: https://linuxize.com/post/how-to-use-sshfs-to-mount-remote-
directories-over-ssh/

51

https://linuxize.com/post/how-to-use-sshfs-to-mount-remote-directories-over-ssh/
https://linuxize.com/post/how-to-use-sshfs-to-mount-remote-directories-over-ssh/
https://linuxize.com/post/how-to-use-sshfs-to-mount-remote-directories-over-ssh/
https://linuxize.com/post/how-to-use-sshfs-to-mount-remote-directories-over-ssh/


Installing programs and libraries

• Let’s consider a simple library and program, let’s borrow the one in the 
cppexamples that we just pulled from GitHub.


• We can either build the program and keep it as a local build ( typical for 
building things on clusters) or install the program into the standard location.


• This is also true for libraries.   

52



Lets quickly build the library
• Details will be given on cake in the c++ lecture, for now just copy me.

53



Lets quickly build the library

• We now have a locally built library.


• Compilers do not know that it exist, if we want to use it we have to tell them where 
to find it. 


• We have two options to automate this.


• 1.  Add the library location to our library search path


• 2. Install the library into the standard search path.

54



Lets quickly build the library
Adding library to search path

• This is very simple. Just need to append the LD_LIBRARY_PATH variable.


• In your home directory, open or create .bashrc. (might be named diff on some linux/UNIX)


• Create or edit the line:


• export LD_LIBRARY_PATH=/path/to/library/:$LD_LIBRARY_PATH


• source .bashrc (or just open new terminal window)


• You will sill need to tell your programs where to find the header files located in the include folder.


• If you are installing things on a cluster this is often the only option.


• If you have access to your experiments preinstalled libraries, they can be added to you system by adding the 
path

55



Lets quickly build the library
Adding library to search path

• This is very simple. Just need to append the LD_LIBRARY_PATH variable.


• In your home directory, open or create .bashrc.


• Create or edit the line:


• export LD_LIBRARY_PATH=/path/to/library/:$LD_LIBRARY_PATH


• source .bashrc (or just open new terminal window)


• You will sill need to tell your programs where to find the header files located in the include folder.


• If you are installing things on a cluster this is often the only option.


• If you have access to your experiments preinstalled libraries, they can be added to you system by adding the 
path

By putting path first, if duplicate library 
names exist it takes this library first.

56



Lets quickly build the library
Adding library to search path

• This is very simple. Just need to append the LD_LIBRARY_PATH variable.


• In your home directory, open or create .bashrc.


• Create or edit the line:


• export LD_LIBRARY_PATH=/path/to/library/:$LD_LIBRARY_PATH


• source .bashrc (or just open new terminal window)


• You will sill need to tell your programs where to find the header files located in the include folder.


• If you are installing things on a cluster this is often the only option.


• If you have access to your experiments preinstalled libraries, they can be added to you system by adding the 
path

Still want the original search 
paths.

57



Lets quickly build the library
Installing library to standard search path

• This can be done by moving the library and include files manually but that is not 
preferred.


• Should be done by the install function built into the compile scripts. 


• This will require ROOT permission which you will only have if you are working on 
your own computer.


• Typical install location on linux is /usr/local/ but should double check for your 
specific linux distribution.

58



Lets quickly build the library
Installing library to standard search path
• This can be done by moving the library and include files manually but that is not 

preferred.


• Should be done by the install function built into the compile scripts. 


• This will require ROOT permission which you will only have if you are working on 
your own computer.


• Typical install location on linux is /usr/local/ but should double check for your 
specific linux distribution.

Need to be on account 
with root permissions

59



Installing programs

• Same with libraries, these can be installed locally or into the standard 
location.


• Program can be run in local directory with ./programname


• From anywhere by putting full path /home/user/folder/programname


• Or the path to the program can be added to the PATH variable same as we 
did with the libraries.

60



Sometimes they do this all for us

• For many packages that we download and build, environment files are 
created that all you need to do is source that file and all the required variable 
will be set.


• This should be mentioned in the build instructions, sometimes you must run 
the install command, for local installs give it your own install folder.


• To automate this again, we can add “source /path/to/envfile.sh” to the .bashrc

61



Additional environmental setup

• I suggest you do some work to fine tune your working environment for you.


• This means setting things in your .bashrc files to speedup standard task. 


• The alias command can be quite useful for doing this.

62



Useful Aliases
Be careful to not overwrite commands that you don’e mean to!

• For safety alias rm to have some safety: alias rm=“rm\ -I”


• For VIM not VI if not already done: alias vi=“vim”


• I alias my ssh calls: alias office=“ssh -Y user@address.ca"


• Alias Docker setup


• Common Make commands: alias cbuild=“cmake —build ./“


• Common work directories: alias scratch="cd /scratch/user/“


• Clear terminal window: alias c=‘clear'


• more: https://www.cyberciti.biz/tips/bash-aliases-mac-centos-linux-unix.html

63

mailto:user@address.ca
https://www.cyberciti.biz/tips/bash-aliases-mac-centos-linux-unix.html


Bash Scripts

• More advanced automation can be created using a bash 


• To first order, they are just a list of commands but can be much more.


• Can be run my just typing path the script. $ ./script.sh


• Too much to go through here, if you feel like you want to automate something 
read this https://linuxconfig.org/bash-scripting-tutorial-for-beginners


• You must have executable permission of the file to run it.

64

https://linuxconfig.org/bash-scripting-tutorial-for-beginners


File Permission

• Files have different permission on computers both for privacy and for safety in 
the operating system. 


• You have the ability to change the permission on files that you yourself have 
permission on.


• If you have root access then you can do anything but should only take 
advantage of this if you know what your are doing!


• If you are on an account with root access, you may still need to use the sudo 
command to access to perform tasks that require root access.


• Permissions for files can be changed using chmod

65



chmod

• Two ways to specify the permissions, alpha and numeric


• chmod u=rwx,g=rx,o=r myfile (u=user, g=group,o=other, 
r=read,w=write,x=execute)


• chmod 754 myfile  (0=no permission,1=execute,2=write,4=read, sum 
together) digits in ugo order.


• More info: https://www.computerhope.com/unix/uchmod.htm

66

https://www.computerhope.com/unix/uchmod.htm


Working on a Cluster

• There are a number clusters across Canada that students are using.


• While practically all of these clusters are linux based, there are a few 
differences that students should look at the documentation of the cluster to 
get specific commands. 


• We will cover information useful for Cedar and Graham, similar protocols exist 
for other clusters but details should be obtained from that clusters 
documentation. 


• Compute Canada Doc: https://docs.computecanada.ca/wiki/Getting_started


• Extra Slurm Stuff: https://www.ch.cam.ac.uk/computing/slurm-usage

67

https://docs.computecanada.ca/wiki/Getting_started
https://www.ch.cam.ac.uk/computing/slurm-usage


Cluster Etiquet

• Login Nodes are for light work! Do not run large scripts/programs (salloc, srun)


• This includes compiling large codes (check with your group, large packages are 
ofter compiles for the group and you can just link to them)


• When you run a lot of jobs and create a lot of small files, if possible compile 
them together into fewer but still manageable sized files (see hadd for root files) 
There is often a max number of file that can be stored and that limit is hit by 
many experiments. 


• Try to always put output files into the /scratch area first and then transfer what 
files need to be kept long term to your project directory or if you must, your 
home directory.  

68



Setting up the environment

• Clusters often have multiple version of libraries available and non standard 
versions can be fetched by loading appropriate modules.


• When called these modules change your LD_LIBRARY_PATH and PATH to point 
to the correct version of the library or program.


• Modules are loaded with:


• module <name of module>


• This can be added to your .bashrc to automate every time you login.


• More information: https://docs.computecanada.ca/wiki/Utiliser_des_modules/en

69

https://docs.computecanada.ca/wiki/Utiliser_des_modules/en


Running Interactive Session

• If we need to perform an interactive task on a cluster (compiling large pieces 
of code, debugging, long root sessions making plots…..) you should enter an 
interactive session.


• Two ways to do this:


• salloc  - -time=h:m:s  - -ntasks=2  - -account=def-someuser (add - -x11 for 
graphical applications)


• srun  - -account=def-someuser - -time=h:m:s —mem=(in mb) executable

70



Running Interactive Session

• This will open an interactive session where you can work and run code. 


• The session is over when you run out of time or you type exit.


• This is useful if you are making root plots and will be stopping and starting 
different applications within the interactive session. 

salloc

71



Running Interactive Session

• Srun is used when you just need to run a single execution of a command.


• Useful for simple tasks like moving large files between /scratch and project 
directories.


• If programs crash during an srun session it will kill the session (unless -W 0 
flag is given)


• Session can also be killed is job finishes and terminal is left idle for too long.

srun

72



Submitting Jobs

• Most of the computing on clusters is done by submitting jobs to the queue.


• Jobs are passed using a job script.


•  simple_job.sh

sbatch

Job submission:


$ sbatch simple_job.sh

#!/bin/bash


#SBATCH - -time=hh:mm:ss


#SBATCH - -account=fed-someuser


#SBATCH - -mem= in mb


command_to_execute


maybe_another

73



Job Management

• $ squeue -u <username> : list your jobs in the queue


• $ srun --jobid 123456 --pty <command> : connect to node with job and run a 
command, good for checking things. I never knew this was possible… we all 
learn. 


• $ scancel <jobid> - cancel job: please so this if you know something is from 
with code. Clean up the queue early for others.

74


