
Introduction to
LabVIEW
Chris Chambers

McGill University

Outline

• Organizing your programs

• Intro to visual programming

• Expanding the toolbox

• Generating and plotting data

• Connecting to (simulated) equipment

Organizing your Programs

Project Architecture in LabVIEW
• LabVIEW has 2 main types of files

• vi : Analogous to a script in another language
• This will be your main file for programming
• File extension: .vi

• Project : Groups vi’s together for easier development
• Store all the vi’s for a project in one location
• File extension: .lvproj

• sub-vi : A vi that is meant to be used inside another vi
• LabVIEW has many built-in sub-vi’s
• You can also write your own
• File extension: .vi

Project Architecture in LabVIEW
• LabVIEW has 2 main types of files

• vi : Analogous to a script in another language
• This will be your main file for programming
• File extension: .vi

• Project : Groups vi’s together for easier development
• Store all the vi’s for a project in one location
• File extension: .lvproj

• sub-vi : A vi that is meant to be used inside another vi
• LabVIEW has many built-in sub-vi’s
• You can also write your own
• File extension: .vi

Project Architecture in LabVIEW
• LabVIEW has 2 main types of files

• vi : Analogous to a script in another language
• This will be your main file for programming
• File extension: .vi

• Project : Groups vi’s together for easier development
• Store all the vi’s for a project in one location
• File extension: .lvproj

• sub-vi : A vi that is meant to be used inside another vi
• LabVIEW has many built-in sub-vi’s
• You can also write your own
• File extension: .vi

Creating a Project and Your First vi
1. Open LabVIEW

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “Finish”

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “finish”
4. A blank project will open

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “finish”
4. A blank project will open
5. Hit “create new” button:

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “finish”
4. A blank project will open
5. Hit “create new” button:
6. Select “Blank VI” and hit “OK”

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “finish”
4. A blank project will open
5. Hit “create new” button:
6. Select “blank vi” and hit “OK”
7. Your first vi is now open!

Creating a Project and Your First vi
1. Open LabVIEW
2. Click “Create Project”
3. Select “Blank Project” and hit “finish”
4. A blank project will open
5. Hit “create new” button:
6. Select “blank vi” and hit “OK”
7. Your first vi is now open!
8. Save the project and give it a name:

• This will prompt you to save the blank vi also

Note that the new vi is in the tree

Intro to Visual Programming

Front Panel and Block Diagram
• LabVIEW has two screens used for programming

• Front Panel
• This is the “GUI”
• Change inputs while the vi runs
• View outputs “live” including graphs

• Block Diagram
• This is the “script”
• Write the operations for the vi
• Do not generally use while vi runs

HELP!

The Front Panel
Run vi Stop vi

Run vi Continuously

Three buttons for controlling execution of vi
• Run vi

• Executes the vi once
• Stops when end is reached

• Stop vi
• Ends execution of vi
• Can use to bail out of unforeseen problems

• Run vi Continuously
• Runs vi as if entire vi is in a while loop
• Stop execution with the “Stop vi” button

The Front Panel

• Three main types of objects
• Controls

• Inputs for vi – can change while vi is running
• Can have many data types (numeric, boolean, …)

• Indicators
• Outputs of the vi – updated “live” as vi runs
• Can have many data types (numeric, boolean, …)

• Graphs
• Displays output data on a graph
• Accepts many data formats
• Highly configurable for readability

The Front Panel

• Three main types of objects
• Controls

• Inputs for vi – can change while vi is running
• Can have many data types (numeric, boolean, …)

• Indicators
• Outputs of the vi – updated “live” as vi runs
• Can have many data types (numeric, boolean, …)

• Graphs
• Displays output data on a graph
• Accepts many data formats
• Highly configurable for readability

The Front Panel

• Three main types of objects
• Controls

• Inputs for vi – can change while vi is running
• Can have many data types (numeric, boolean, …)

• Indicators
• Outputs of the vi – updated “live” as vi runs
• Can have many data types (numeric, boolean, …)

• Graphs
• Displays output data on a graph
• Accepts many data formats
• Highly configurable for readability

GUI Example
Graph On/Off Buttons

Numeric
Controls

Boolean Selectors

Toggle Buttons
w/ Indicators

Numeric
Controls

Tabs

Boolean Indicator

The Block Diagram
• Five basic types of objects

• Controls, Indicators + Graphs
• Linked to their front panel counterparts
• Can have many data types (numeric, boolean, …)

• Constants
• These are “hard coded” variables in the vi
• Data types shown as different colors

• Local Variables
• Are created from controls or indicators
• Used to read/write variables during code operations

• Structures
• Boxes that contain a section of code
• Types: loops, cases, events, sequences

• Operators
• Arithmetic, logic, comparison

Icons

Basic

The Block Diagram
• Five basic types of objects

• Controls, Indicators + Graphs
• Linked to their front panel counterparts
• Can have many data types (numeric, boolean, …)

• Constants
• These are “hard coded” variables in the vi
• Data types shown as different colors

• Local Variables
• Are created from controls or indicators
• Used to read/write variables during code operations

• Structures
• Boxes that contain a section of code
• Types: loops, cases, events, sequences

• Operators
• Arithmetic, logic, comparison

The Block Diagram

Read:

Write:

• Five basic types of objects
• Controls, Indicators + Graphs

• Linked to their front panel counterparts
• Can have many data types (numeric, boolean, …)

• Constants
• These are “hard coded” variables in the vi
• Data types shown as different colors

• Local Variables
• Are created from controls or indicators
• Used to read/write variables during code operations

• Structures
• Boxes that contain a section of code
• Types: loops, cases, events, sequences

• Operators
• Arithmetic, logic, comparison

The Block Diagram
For Loop While Loop

Case Structure Event Structure

Sequence

• Five basic types of objects
• Controls, Indicators + Graphs

• Linked to their front panel counterparts
• Can have many data types (numeric, boolean, …)

• Constants
• These are “hard coded” variables in the vi
• Data types shown as different colors

• Local Variables
• Are created from controls or indicators
• Used to read/write variables during code operations

• Structures
• Boxes that contain a section of code
• Types: loops, cases, events, sequences

• Operators
• Arithmetic, logic, comparison

The Block Diagram
• Five basic types of objects

• Controls, Indicators + Graphs
• Linked to their front panel counterparts
• Can have many data types (numeric, boolean, …)

• Constants
• These are “hard coded” variables in the vi
• Data types shown as different colors

• Local Variables
• Are created from controls or indicators
• Used to read/write variables during code operations

• Structures
• Boxes that contain a section of code
• Types: loops, cases, events, sequences

• Operators
• Arithmetic, logic, comparison

Numerical Operators

Logical Operators

Comparisons

The Block Diagram

• Wires connect the objects in the block diagram

• LabVIEW prefers the code to go left-to-right

• Wires give ordering of operations
• The data “flows” through the wire

• The example takes two numbers set by the user
(“A” and “B”) and adds them, displaying the
answer as “A+B” on the front panel

Front Panel:

Block Diagram:

Live Demos 1 and 2
Demo 1

Write a vi to do all four basic math operations
on two numbers that are controllable via the
front panel. Display the results on the front
panel.

Demo 2

Write a vi to take two Boolean inputs and do
the three main logical operations: AND, OR,
XOR. Display the outputs of these operations
as LED’s. Use a case structure to print a
response string to one of the operations. Use a
case structure to print the states of the
Booleans as a string.

Expanding the Toolbox

I’m more than
a calculator!

Expanding the Toolbox -- Data Types

• Numeric – integers, floats etc..
• LabVIEW is generally good at automatic representation matching

• Boolean – True/False
• Booleans can be converted to/from integers easily if needed

• Strings – Can be anything, but is usually text
• Path – Special format used for directory paths
• Array – Stores multiple values in one object

• Most other data types can be made into arrays
• Can be made in N dimensions

• Waveform – Array with built in uniform time ordering
• Requires t0 (initial time) and dt (time between data points)

• Cluster – Similar to a dictionary-type object
• Uses labels to point at objects in cluster
• Can mix and match data types

Expanding the Toolbox -- Arrays
Creating an array constant

right-click menuconstant
array constant

Click-and-drag

just fill in
the entries

Initialize and append an array

Get value from array

initial value in array

dimension of array

“Initialize Array”

“Build Array”

value to append to array

Appended array

Note: Thick wires indicate an array-type object

index of element to get

“Index Array”

Expanding the Toolbox – Loops
FOR LOOP WHILE LOOP

number of iterations

Current Iteration (read) “Stop when True”

iterates thru array (N not required if used)

passes entire array

indexes entries
to array-type

initializes
null array
if “0”

Shift register: passes from one loop
iteration to next

Will run until
vi is stopped

Expanding the Toolbox -- Statistics
LabVIEW has a comprehensive statistics suite, you can do almost anything

Expanding the Toolbox – Timing Palette
• Most used objects

• Wait (ms)
• Waits for the wired number of ms
• Useful for setting rough loop execution rate

• Wait Until Next ms Multiple
• Waits until current time (ms) is multiple of wired number
• Useful for setting more precise loop execution rate
• First iteration may be shorter

• High Resolution Relative Seconds
• Returns the current time since epoch in seconds as a DBL
• Useful for making a timer

• Get Date/Time in Seconds
• Returns current time as a timestamp-type object

• Format Date/Time String
• Turns Timestamp object into a string with highly flexible formatting
• Useful for recording timestamps in a file

Expanding the Toolbox -- sub-vi’s
• A program within a program, analogous to functions in other languages

• Have inputs and outputs with pre-assigned and labeled nodes
• Differ from “primitives”, which are all “LabVIEW Straw” color

• Primitives are non-editable, you can open and edit sub-vis

• We have seen many primitives and “built-in” sub-vi’s already

• You can write your own, or get custom vi’s from colleagues or forums
• Helpful for de-cluttering the block diagram
• Can write a sub-vi once and use it all over your project and beyond
• Easy to import if you know the file location

• Be Organized!
• NI has it’s own moderated forum of vi’s written by users

Primitives Sub-vi’s

Expanding the Toolbox – Graphs & Charts
• Graphs and charts are the main ways to display data

• Graph: Plots only the data it is passed when called
• Chart: Stores “history” and updates the plot with passed values

• Both created from the front panel
• Main types

• XY Graph
• Plots data with x and y coordinates
• Data input as an array of (x, y) clusters

• Waveform Graph/Chart
• Plots 1D waveforms or arrays
• Assumes time for x-axis of plot

• Intensity Graph/Chart
• Plots 2D arrays of data as function of index
• Can scale the x and y axes to reflect actual values

• More information in the “Example vi” slides at the end

Expanding the Toolbox – Graphs & Charts
• Graphs and charts are the main ways to display data

• Graph: Plots only the data it is passed when called
• Chart: Stores “history” and updates the plot with passed values

• Both created from the front panel
• Main types

• XY Graph
• Plots data with x and y coordinates
• Data input as an array of (x, y) clusters

• Waveform Graph/Chart
• Plots 1D waveforms or arrays
• Assumes time for x-axis of plot

• Intensity Graph/Chart
• Plots 2D arrays of data as function of index
• Can scale the x and y axes to reflect actual values

• More information in the “Example vi” slides at the end

Expanding the Toolbox – Graphs & Charts
• Graphs and charts are the main ways to display data

• Graph: Plots only the data it is passed when called
• Chart: Stores “history” and updates the plot with passed values

• Both created from the front panel
• Main types

• XY Graph
• Plots data with x and y coordinates
• Data input as an array of (x, y) clusters

• Waveform Graph/Chart
• Plots 1D waveforms or arrays
• Assumes time for x-axis of plot

• Intensity Graph/Chart
• Plots 2D arrays of data as function of index
• Can scale the x and y axes to reflect actual values

• More information in the “Example vi” slides at the end

Expanding the Toolbox – Graphs & Charts
• Graphs and charts are the main ways to display data

• Graph: Plots only the data it is passed when called
• Chart: Stores “history” and updates the plot with passed values

• Both created from the front panel
• Main types

• XY Graph
• Plots data with x and y coordinates
• Data input as an array of (x, y) clusters

• Waveform Graph/Chart
• Plots 1D waveforms or arrays
• Assumes time for x-axis of plot

• Intensity Graph/Chart
• Plots 2D arrays of data as function of index
• Can scale the x and y axes to reflect actual values

• More information in the “Example vi” slides at the end

Expanding the Toolbox – Output to File
• LabVIEW has many options for file output

• Write strings line-by-line
• Most flexible for formatting output
• Writing line-by-line can slow down vi

• Write an array to spreadsheet file
• Done once, which is faster than N writes
• Fairly restrictive formatting, but some options

• Write waveform to spreadsheet file
• Write only once for whole file
• Records t0 and dt as well as the timestamp
• String format is fixed

Expanding the Toolbox – Output to File
• LabVIEW has many options for file output

• Write strings line-by-line
• Most flexible for formatting output
• Writing line-by-line can slow down vi

• Write an array to spreadsheet file
• Done once, which is faster than N writes
• Fairly restrictive formatting, but some options

• Write waveform to spreadsheet file
• Write only once for whole file
• Records t0 and dt as well as the timestamp
• String format is fixed

close fileopen file write string

write number
as string

OR

Expanding the Toolbox – Output to File
• LabVIEW has many options for file output

• Write strings line-by-line
• Most flexible for formatting output
• Writing line-by-line can slow down vi

• Write an array to spreadsheet file
• Done once, which is faster than N writes
• Fairly restrictive formatting, but some options

• Write waveform to spreadsheet file
• Write only once for whole file
• Records t0 and dt as well as the timestamp
• String format is fixed

Expanding the Toolbox – Output to File
• LabVIEW has many options for file output

• Write strings line-by-line
• Most flexible for formatting output
• Writing line-by-line can slow down vi

• Write an array to spreadsheet file
• Done once, which is faster than N writes
• Fairly restrictive formatting, but some options

• Write waveform to spreadsheet file
• Write only once for whole file
• Records t0 and dt as well as the timestamp
• String format is fixed

A quick note on DAQmx
DAQmx is the “plug and play” way to communicate with hardware using LabVIEW.
The vi’s are found under the “Measurement I/O” panel

• Can read and write both analog and digital data
• Create “tasks” that organize the communication

• All operations in a task must be the same type (e.g. read analog voltage)
• Can index the channels in a task by number or name
• Can run multiple tasks in one vi “Create Channel”

“Read”

This reads from a piece of equipment,
and then plots it on a chart.

Designates the port
on the computer

Select type of input/output

A quick note on DAQmx
DAQmx is the “plug and play” way to communicate with hardware using LabVIEW.
The vi’s are found under the “Measurement I/O” panel

• Can read and write both analog and digital data
• Create “tasks” that organize the communication

• All operations in a task must be the same type (e.g. read analog voltage)
• Can index the channels in a task by number or name
• Can run multiple tasks in one vi “Write”Designates the port

on the computer

Select type of input/output

This writes a digital signal to a piece of
equipment when the Boolean control is toggled

Live Demos 3 and 4
Demo 3

Write a program to take random numbers
from a normal distribution and make a
histogram of the values. There is no normal
distribution generator in LabVIEW, but I have
provided a custom sub-vi adapted from
Christian Altenbach’s example. You will need
to have this vi downloaded to your computer
from the indico page.

Demo 4

Write a program to set the parameters of a
function generator with added noise and
plot the output “live”. Make a button to stop
the program, and plot the full data set after
the program is stopped. Finally, write the
time and function generator data to a csv
file.

Reference Slides

Detail on Plotting – XY Graph

Empty Cluster
Constant
(I32, DBL)

number of loops

“bundle”loop iteration

random number (0-1)

“build array”

shift register

Detail on Plotting – Waveform Graph

This vi stores the timestamp of each
sample, and uses the first as t0

plotted as function of timestamp
this can also be plotted by time in seconds

number of loops

“Initialize Array”
“Build Array”

“Get Date/Time
in Seconds”

empty timestamp
constant

“Build Waveform”

“Index Array”

random number (0-1)

“Milliseconds to Wait”

convert loop time
to seconds

loop execution
time (ms)

Detail on Plotting – Waveform Chart

This plots “live”, this is a screenshot of the final plot
“Milliseconds to Wait”

convert loop time
to seconds

number of loops
random number (0-1)

“Build Array”
“Build Waveform”

“Get Date/Time
in Seconds”

loop execution
time (ms)

Detail on Plotting – Intensity Graph

number of loops

“Initialize Array”

“x” loop
“y” looprandom number (0-1)

Slice off initial
empty rows in x

“Get Array Subset”
“Build Array”

Detail on Structures -- Events

Event structures are triggered objects that
execute the contents of the structure when
the trigger condition is met.

Like a case structure, there can be many
triggers that execute different commands,
each trigger condition has its own “pane”.

The “timeout” condition is the default, and
will trigger when the time wired to the
hourglass icon elapses. This can be disabled
by removing the “Timeout” case.

trigger condition for current pane

current pane index select pane

After “Timeout (ms)” has elapsed since
the last execution of the event, this
writes “Timed out” to a string indicator

Detail on Structures -- Events

Event structures are triggered objects that
execute the contents of the structure when
the trigger condition is met.

Like a case structure, there can be many
triggers that execute different commands,
each trigger condition has its own “pane”.

This case uses a Boolean to trigger the
event, but this is not the only option. The
“Value Change” Condition can be used on
any data type. However, Booleans are really
handy in practice

current pane index

If the “Trigger Event” switch is toggled,
this writes “Event Triggered” to the
same string indicator

boolean control

trigger condition for current pane

Detail on Structures -- Events

Event structures are triggered objects that
execute the contents of the structure when
the trigger condition is met.

Like a case structure, there can be many
triggers that execute different commands,
each trigger condition has its own “pane”.

This case uses a comparator to generate a
Boolean that triggers the event.

current pane index

If the data value goes over the constant
value, this writes “Data over threshold”
to the same string indicator

trigger condition for current pane

Detail on Structures -- Sequences

Sequences allow a step-by-step
procedure to be followed by the
program. This is especially helpful
when setting up an experimental
procedure by avoiding “race”
conditions, where two processes run
simultaneously and asychonously.

For example, say you want to turn on
a light source and take data while it is
on. A sequence ensures the data is
taken only while the light source is
on.

Initialize the
Boolean to False

Set the Boolean to True

Keep the Boolean true for some time

Set the Boolean to False

Creating a Custom Sub-vi

1. Write a vi to do the desired function

2. Select the nodes to wire to the controls and
indicators. These will be the inputs and outputs
of the sub-vi.

3. Customize the icon!

4. Save the vi with a suitable name

5. Use your new sub-vi using “Select a VI…”
in the block diagram menu

Creating a Custom Sub-vi

1. Write a vi to do the desired function

2. Select the nodes to wire to the controls and
indicators. These will be the inputs and outputs
of the sub-vi.

3. Customize the icon!

4. Save the vi with a suitable name

5. Use your new sub-vi using “Select a VI…”
in the block diagram menu

2a. Click a node

2b. Click a
control/indicator
to assign to the
node

Creating a Custom Sub-vi

1. Write a vi to do the desired function

2. Select the nodes to wire to the controls and
indicators. These will be the inputs and outputs
of the sub-vi.

3. Customize the icon!

4. Save the vi with a suitable name

5. Use your new sub-vi using “Select a VI…”
in the block diagram menu

Right click and select “Edit Icon…”

Creating a Custom Sub-vi

1. Write a vi to do the desired function

2. Select the nodes to wire to the controls and
indicators. These will be the inputs and outputs
of the sub-vi.

3. Customize the icon!

4. Save the vi with a suitable name

5. Use your new sub-vi using “Select a VI…”
in the block diagram menu

Creating a Custom Sub-vi

1. Write a vi to do the desired function

2. Select the nodes to wire to the controls and
indicators. These will be the inputs and outputs
of the sub-vi.

3. Customize the icon!

4. Save the vi with a suitable name

5. Use your new sub-vi using “Select a VI…”
in the block diagram menu

