New experimental approaches for constraining neutron capture cross sections in exotic nuclei

Dennis Mücher University of Guelph + TRIUMF

Abundance distribution in the Solar System

Overview: Nucleosynthesis

The r-process in action

Made with SkyNet by Jonas Lippuner

Do we need to measure ALL of them?

How to constrain neutron capture rates?

• Neutron capture rate measurements: (quasi)-stable nuclei, only!

Maybe we can calculate it?

<u>Hauser – Feshbach</u>

• Nuclear Level Density Constant T+Fermi gas, back-shifted Fermi gas, superfluid, semimicroscopic, ...

γ-ray strength function

Generalized Lorentzian, Brink-Axel, ...

Optical model potential

Phenomenological, Semi-microscopic

(A, Z)

The Oslo Method

A model-independent approach to gSF

The "sewing" method

M. Wiedeking, M. Guttormsen et al, submitted to Phys. Rev. C (12/2020) arXiv:2010.15696 (physics)

ShapeIt!

Did it work? Yes!

- Good match with previous results
- Model-independent "shape" of the gSF
- Absolute normalization still required

D.M, A. Spyrou et al, submitted to Phys. Rev. Lett (12/20)

arXiv:2011.01071 (nucl-ex)

Decay into ⁸⁸Kr: CARIBU@ANL

Setup: SuN@ANL

fiber

- Nov. 2019: SuN moved to ANL
- Feb. 2020: Commissioning
- Feb. 2020: First experiment
 ⁸⁷⁻⁸⁹Kr(n,γ)⁸⁸⁻⁹⁰Kr
 PI: Stephanie Lyons, PNNL

Beta-Oslo setup at NSCL (Slide by Artemis Spyrou)

SuN

First case for an unstable nucleus!

D.M, A. Spyrou et al, submitted to Phys. Rev. Lett (12/20) arXiv:2011.01071 (nucl-ex) $P(E_{\gamma}, E_{x}) \sim \rho(E_{x} - E_{\gamma})\mathcal{T}(E_{\gamma})$

 \rightarrow Absolute level density!

The absolute nuclear level density

"The nuclear level density is a key ingredient for understanding nuclear reactions in the laboratory, in technological applications, and in nucleosynthesis studies" S. Karampagia, V. Zelevinsky: Int. J. Mod. Phys. E DOI: 10.1142/S0218301320300052

Astrophysics: Are we sensitive enough?

→ we can discriminate between different models used in nucleosynthesis simulations

D.M, A. Spyrou et al, submitted to Phys. Rev. Lett (12/20)

Future: ARIEL beams

- Very competitive beam intensities expected around ¹³²Sn region
- ISAC-I: beta-decay
- ISAC-II: 6 MeV/u ideal for one-neutron-transfer
- High resolution gamma ray spectroscopy, specially compared to TAS

First significant improvement on its way: CANREB ion source

Experimental challenges

- Values for P_n presumably very large for almost all relevant r-process cases
- Current TAS instruments do not allow for event-by-event neutron-gamma discrimination
- MTAS (ORNL) can identify the presence of neutrons and are working on improvements towards better discrimination

A Total Absorption Spectrometer for ISAC?

Wishlist for a dedicated ISAC-TAS:

- Basic design like existing TAS devices (SuN, MTAS)
- Tape system critical (we have experience with this at TRIUMF)
- new: neutron identification, e.g. Nal(Tl+Li) crystals
- new: suppression of β-decay electrons:
 - Permanent magnetic inside the bore?
 - External magnetic field?
 - Extra, inner, detector layer?
- new: Phototubes → SiPMs

Next steps:

- Input from ISAC community: other potential uses for such a device?
- Level-0 design study, cost estimate (\$2.5M?)
- Gate-0 review
- Do we have the manpower at TRIUMF and/or elsewhere?

Beta-decay has its limitations...

Nuclei "south-east" of ¹³²Sn are very weakly bound

 \rightarrow Low level density at S_n

 \rightarrow Hauser Feshbach applicable?

Mathews et al, Astrophysical Journal 270, 1983

Idea:vertex tracking at ISOL energies using Si detectors

Oslo-method using TI-STAR and TIGRESS

gamma energy (keV)

Layout of TI-STAR

Geant4: TI-STAR + TIGRESS: Joseph Turko, UoG

TI-STAR = TIGRESS Silicon Tracker ARray Mechanical Design:

- Fred Sarazin (Colorado School of Mines)
- Robert Hendersson (TRIUMF)

PCB Design SKIROC-2 ASICs

- Fits into 20cm spherical scattering chamber
- ~3000 silicon channels
- SKIROC-2 delivers fully digital signal
- Custom-made FPGA board outside TI-STAR

PCB Design: H. Behnamian, UoGuelph

heat transfer simulation using 24 ASICs

Neutron capture rates accessible using ARIEL beams

adapted from Prog. Part Nucl Phys 86 (2016) 86-126

Summary+Thank you to all the people

- Neutron capture rates are a critical input to pin down origin of r-process
- We are now able to constrain these rates far away from stability with reduced model dependence
- We also get access to the absolute nuclear level density
- Future experimental work:
 - TI-STAR @ ISAC-II (under construction)
 - TAS @ ISAC (early ideas)
 - Collaborations with ANL and FRIB

- Artemis Spyrou, NSCL
- SuN@ANL team
 - Stephanie Lyons (PI)
 - Caley Harris (PhD)
 - + all the group members
- CARIBU + ANL team: thank you!
- TI-STAR team
 - Hadi Behnamian
 - Fred Sarazin
 - Vinzenz Bildstein
 - Beau Greaves

What is needed?

- Independent of D₀
- Does not require building "first generation" matrix
- Requires resolving two discrete low-lying states
- Two states with same spin and parity preferred

Maybe we just got lucky tough...

M. Wiedeking, M. Guttormsen et al, submitted to Phys. Rev. C (12/2020) arXiv:2010.15696 (physics)

It works for multiple states! (it better...)

M. Wiedeking, M. Guttormsen et al, submitted to Phys. Rev. C (12/2020) arXiv:2010.15696 (physics)

Total Absorption Spectrometry

