$W\gamma\gamma$ production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector

Alessandro Ambler Supervisor : Brigitte Vachon McGill University

February 12, 2021

Image: A math the second se

- In the Standard Model (SM), self coupling of electroweak gauge bosons entirely specified by non-Abelian SU(2)xU(1) structure
 - Deviations would indicate new physics phenomena at unprobed energy scales
- The SM process $pp
 ightarrow W \gamma \gamma$ is an important test of this structure
 - Goal is to achieve first observation of this process
 - Search for hints of new physics and set limits in model independent way using effective field theory (EFT)

ATLAS Detector

- This analysis uses almost 140 fb⁻¹ of data collected by the ATLAS detector at the Large Hadron Collider (LHC) during its second running period
 - The LHC is a 27 km in circumference proton-proton collider with a center-of-mass energy of 13 TeV
- ATLAS is a general purpose detector with multiple subdetectors
 - These are used for tracking, calorimetry and spectrometry using a superconducting magnet system

Figure: ATLAS detector. Source : cds.cern.ch

イロト イヨト イヨト イ

$p p \rightarrow W (\rightarrow e \nu_e / \mu \nu_\mu) \gamma \gamma$

• Typical signature given by $W(\rightarrow e\nu_e \ / \ \mu\nu_\mu)\gamma\gamma$ event in the transverse plane of the detector :

Figure: ATLAS event display : inner tracking detector in green, calorimeter in light blue and muon spectrometer in grey. Photons in yellow, electron (left) in red, muon (right) in red and neutrinos in blue. Credit : Dr. Heather Russell (McGill now CERN)

イロト イヨト イヨト イヨ

- Most irreducible backgrounds accurately modeled in simulation
 - Some more challenging
- Main challenges of analysis : jet misidentified as lepton or photon
 - Hard to model in simulation due to numerous sources of jets and complicated detector interactions
- Must develop data-driven techniques
 - Focus of talk : jets misidentified as leptons

Figure: Processes at LHC are often accompanied by hadronic jets of particles originating from quark(s) or gluon(s) in hard scatter. Source : physicsworld.com

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Jets Misidentified as Leptons

- Kinematic variables used to discriminate leptons from jets :
- Isolation energy
 - Discriminates against jets directly faking leptons (fakes)
- Impact parameter
 - Discriminates against leptons from heavy flavor jets (non-prompt leptons)
- Data driven method relies on inverting these requirements
 - "tight" leptons pass
 - "loose" leptons fail
 - Other requirements remain the same (based on trigger requirements, detector acceptance, tracking and particle identification)

Figure: Impact parameter d₀. Source : wikipedia.org

イロト イポト イヨト イ

Data Driven Method

- Goal:
 - Find a fake enriched region of phase space
 - Derive efficiency for jet / non-prompt lepton being reconstructed as lepton
- Control region (CR) : select $Z \rightarrow l^+ l^- + fake$ events
 - Very clean signature
- Reconstruct Z :
 - Two "tight" same flavor opposite sign leptons near Z mass
- Third opposite flavor lepton :
 - Used to estimate fake efficiency

$$\epsilon_{\textit{fake}} = \frac{N_{\textit{tight}}}{N_{\textit{tight}} + N_{\textit{loose}}}$$

Figure: Example $p + p \rightarrow Z + jet$

- CR includes E_T^{miss} and $m_{T,W}$ cuts
 - E_T^{miss} : missing transverse energy
 - $m_{T,W}$: transverse mass of W boson
 - Reduces WZ contribution
 - Simulation used to subtract remainder

Fake Efficiencies

- Expected disagreement between data and Monte Carlo (MC) simulation
- Efficiency binned in p_T and η
 - p_T : transverse momentum
 - η : pseudorapidity, related to angle w.r.t. beam axis
- Fake "factor" derived from efficiency :
 - Applied as weight to every event based on lepton kinematics
 - Allows for analysis binned in variable like *p*_{T,γ1} and *m*_{γγ}

Signal Region

- Results in $W\gamma\gamma$ signal phase space :
 - Agreement in 1 bin between MC simulation and estimate
 - Binned estimates largely disagree
- Method needs validation region :
 - No overlap with signal region but with similar kinematics and fake contributions

Muon Channel	
Method	Fakes Estimate
MC simulation	35 ± 9
Fake Factor	29^{+4}_{-3}

Validation Region

- Signal region has E_T^{miss} and $m_{T,W}$ cuts
 - Select for W
 - Reduce prompt background
- Validation region obtained by inverting these cuts
- Agreement between data and truth MC + fakes
 - Truth MC : reconstructed lepton must match lepton from hard scatter

Muon Channel	
Truth MC	86 ± 12
Fakes	19^{+3}_{-2}
Data	105 ± 10

Summary and Outlook

• Summary :

• Contribution of misidentified leptons to $W\gamma\gamma$ signal has been estimated

• Outlook :

- Estimate systematic uncertainties
- Estimate $e \rightarrow \gamma$ fakes
- Finalize SR fit (initial studies with MC only show > 5σ)
- Test EFT hypothesis

$$\mathcal{A}_{SM} + f_{T5}\mathcal{A}_{T5}|^2 = |\mathcal{A}_{SM}|^2 + 2f_{T5}\mathcal{R}e\{\mathcal{A}_{SM}^{\star}\mathcal{A}_{T5}\} + f_{T5}^2|\mathcal{A}_{T5}|^2$$

Figure: Example figure showing effect of EFT operator T_5 at different coupling strengths f_{T_5} compared to SM prediction

Image: A match the second s