Precision measurement of the Z-boson transverse momentum with the ATLAS detector

Ben Davis-Purcell
Supervised by Dr. Manuella Vincter
February 12, 2021

The ATLAS Experiment with the Large Hadron Collider (LHC) at CERN

- CERN: Huge particle physics laboratory best known for housing the LHC, the most powerful particle accelerator ever built
- ATLAS: General-purpose detector that measures the properties of particles created from LHC proton-proton collisions
- Collisions involve "bunches" of protons: ~100 billion protons/bunch, 1 bunch/25 ns, ~0-100 pp collisions/bunch (pileup)

Performance

- Does this algorithm work well?
- Example: new machine learning technique accurately reproduces a previous result

Searches

- Does this new process/particle exist?
- Example: looking for dark matter particles within the ATLAS dataset

Measurements

"Known" Processes

- Can we measure this for the first time?
- Example: first measurement of light-by-light scattering

- Can we reduce the error bars for this well-known property/process?
- Example: more data improves the precision of the W-boson mass by reducing the stat. uncertainty, constraining the Standard Model

Standard Model of Particle Physics

$$pp \to Z \to l^+ l^-$$

$$pp \to Z \to l^+ l^-$$

$$pp \to Z \to l^+ l^-$$

$$pp \to Z \to l^+ l^-$$

At first glance, by momentum conservation we would expect $p_T^Z = 0!$

Motivation for p_T^Z

- p_T^Z is an excellent probe of Quantum Chromodynamics (QCD) beyond Leading Order (LO)
- Use this info. to better understand interactions within the proton

Motivation for p_{τ}^{Z}

- Z and W have a similar decay schematically; however, we can measure e^{\pm} or μ^{\pm} but not ν
- Important for reducing uncertainties on the W-boson mass; p_T^W is required for measuring m_W , use Z-boson as a proxy to calibrate $p_{\scriptscriptstyle T}^W$

W-boson Mass Measurement (m_W)

Experiment uncertainty > theory uncertainty!

https://arxiv.org/abs/1701.07240

How Z Supports W

Z decay:

$$Z \rightarrow l^+ l^-$$

W decay:
$$W^{\pm} \rightarrow l^{\pm} \nu$$

Neutrino from W escapes as missing energy; must use only hadronic recoil (u_T) to measure p_T^W but can measure p_T^Z with both p_T^{ll} and u_T

$$\vec{p}_T(W/Z) = \vec{p}_T^{lepton1} + \vec{p}_T^{lepton2}$$

$$= -\vec{u}_T$$

- p_T^{ll} and u_T are theoretically equal but hadronic recoil is inherently more difficult to measure
- Low pileup (μ) environment improves u_T resolution

Low Pileup Environment

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

Fewer proton-proton collisions = cleaner environment = improved u_T measurement! Downside: reduced statistics

Measurement Uncertainties

Only limited by statistics (pink) and luminosity (orange)! Systematic errors total < 1%

Observable Cross-Section Comparison

- ullet Cross-section should be independent of observable: both p_T^{ll} and u_T are measures of p_T^Z
- Excellent agreement seen, confirming the efficacy of the u_T measurement

Summary

- p_T^Z differential cross-section measurement made at E_{CM} = 5, 13 TeV
- Clean low pileup environment allows for precise measurement of hadronic recoil (u_T)
- both p_T^{ll} and u_T have systematic error below 1%
- Finalizing precision p_T^Z and p_T^W measurements with low pileup data

Large Hadron Collider (LHC) at CERN

- CERN: Huge particle physics laboratory near Geneva, Switzerland
- Best known for housing the LHC, the most powerful particle accelerator ever built
- LHC: 27 km circumference ring that accelerates and collides protons to 0.99999999 x (the speed of light), recreating the energy density of less than one billionth of a second after the Big Bang!

The ATLAS Experiment

- General-purpose detector designed to measure the properties of the particles created from the LHC proton-proton collisions
- LHC collides "bunches" of protons: about 100 billion protons per bunch; 1 bunch every 25 ns; multiple collisions per bunch: **pileup**
- More than 1 billion particle interactions in the detector every second!

Normalized Differential Cross-Section

Lepton channel cross-section comparison

- Cross-section should be independent of lepton channel due to lepton universality
- Good agreement seen between channels

Measurement Uncertainties @ 5 TeV

Lepton channel cross-section comparison

Observable cross-section comparison

$$E_{CM} = 5 \text{ TeV}$$

Normalized Differential Cross-Section

