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Why Study Vector Boson Scattering (VBS)?

In the Standard Model, the interactions between gauge bosons are completely
specified by the SU(2) x U(1) structure of the theory.
This makes the study of the interactions between gauge bosons a powerful

approach to search for new physics.
Any deviation from SM predictions in the self interactions of gauge bosons

would indicate the presence of new physics phenomena.
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VBS at the LHC

Standard Model Production Cross Section Measurements Status: November 2019
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The LHC provides a
unigue environment in
which to study rare
Standard Model
processes.

The search for evidence
of scattering between a
W boson and a photon
is carried out using a
total of 139 fb' data
collected by the ATLAS
detectorat /g =13
TeV.



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-024/

Challenges of VBS Measurements

e The search for the scattering of a W boson and a photon comes with

formidable challenges.
o There is a large and irreducible background from poorly modelled processes involving strong
interactions between particles (QCD):
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o  The impertect modelling ot the detector response results in a non-negligible number of jets
being misidentified as photons.

e In this talk | will discuss a data driven approach to estimating the number of
jets misidentified as photons and a machine learning approach to estimating
the number of signal events from the large irreducible background.




Jets Faking Photons - A Data Driven Approach

e Simulated events cannot be used to N NSNS NN NSNS NN
estimate the size of this background due / \
to the imperfect modelling of the detector
response to jets. ! )

e Photon Identification relies on

measurements in the calorimeter.
o A photon candidate satisfying various cuts on
calorimeter variables is considered tight. {
o A photon candidate that fails a subset of these S| _
cuts is considered non-tight.
o  Atight and isolated photon candidate is
considered a signal photon.

e Photon candidate identification variables are uncorrelated with isolation energy

o  The shape of the isolation distribution for tight and non-tight photon candidates, originating from jets,
is the same.
o Use this property to estimate the number of jets misidentified as photons.



The Template Fake Method

g Bifvoton Eamaigle® "Jet Template”

eal Photon lemplate Isolation distribution of real
Isolation distribution of true L
photons from simulation. reé; ks G

it isolation distribution o
real data in photon-
enriched region. Obtain
best fitted normalization
of two template
distributions.
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Estimate the number of
jets mis-reconstructed
as photons using fitted
jet template distribution




Determining the isolation shape of jets mis-identified as

photons

Jet enriched region still contains a S
small fraction of true photons. =
o  Determine the shape of the isolation of true %
photons from simulated data. i

o Assume a functional form for jets
contribution.
o Fit combined shapes to real data.

Shape of isolation of jets mis-identified
as photons given by best-fit
parameters of jet function (blue curve).
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Checking the Method

Verify method by creating a
testing dataset from simulated
data.

Estimated distribution of jets
mis-reconstructed as photons
(blue line) matches simulated
sample (blue points).

Events /(0.8 )

1000

800

600

400

200

-~ ATLAS Work in Progress ' = = = T
_—13 TeV 139 fb- e  Simulated Data

@ Simulated Photons
L e +u channel

° Simulated Jets
[~ Control Region s Combined shape
Distribution of Jets Faking Photons

= Distribution of Real Photons

|III|II

60 < pT () [GeV] <90

III|III|IIIIIII
III|III|III|II

! 1 I I 1 L | I I | 1
-20 0 20 40
E,cone40 - 0.022pT(y) [GeV]



Distinguishing Electroweak Signal from Irreducible
Background

Large irreducible background from
QCD processes.
To leverage the discriminating
power of multiple variables, use
them to train a neural network.
o 5 layer fully connected neural network.
o  Trained on 18 variables.

o  60% of simulated sample used as
training set, 20% used as testing set.

NN distinguishes signal from QCD

background with 69% accuracy.

o  Signal defined as event with NN score
> 0.5.

Normalized Events
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Generalizing performance from MC to data

e The neural network will learn correlations between training variables. Similar
performance can be expected when evaluating the model on data if the
correlation matrices are similar.
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Comparing Simulated and Real Data NN output

e Apply NN to real data in ‘g o e e 0 ¥ 6at'a K
background-enriched control N o — Signal MC
region to verify agreement 10° —— Background MC
between data and simulation. 10°

e NN model generalizes well
onto real data.

Data/MC

L
18
16
14
12

1
os

o6

o4

o2

NN score

12



Next Steps: Adversarial Training

Irreducible QCD background is mismodelled at high values of di-jet invariant mass (MJ.J.)
Train a second neural network to learn the Mjj distribution (predict ij bins) from the
output of the classifier.

Adversarial
Training
Signal and 2 3
. Class Mjj as predicted
Bag:gmtsmd —> Classifier Pmbabimies—~> Adversary by adversary

}

Lf = True class - Predicted
class

Lr = True Mjj bin
probability - Predicted

\ }bin probability
Minimize so Class

Probabilities do not depend ——>» L=Lf-ALr
on poor Mjj modeling
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Summary

VBS measurements provide a powerful probe of new physics.

The search for the vector boson scattering of a photon and a W boson comes
with two significant challenges: a large background from jets misidentified as
photons and a large irreducible QCD background.

A data driven approach has been shown to effectively estimate the
background from jets faking photons.

A neural network has been trained to strongly discriminate the electroweak
signal from the dominant QCD background.

New techniques being explored for regularizing the neural network to not
learn MC mismodelling.
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