

Search for New Physics Inside Jets at the ATLAS Detector using Machine Learning

Jacinthe Pilette

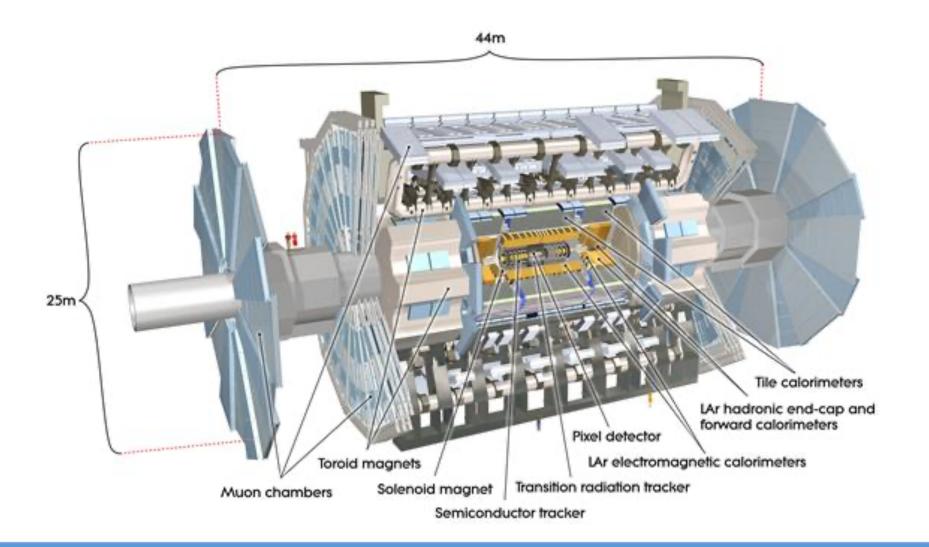
WNPPC 2021

Search for New Physics at ATLAS

- All we know about particle physics is in the Standard Model.
- We also know it has some limits :
 - Gravity
 - Dark matter
 - Hierarchy problem for the Higgs mass
 - Free parameters
- A lot of new physics model were conceived :
 - Supersymmetry
 - Axions
 - Composite Higgs
 - Leptoquarks

Search for New Physics at ATLAS

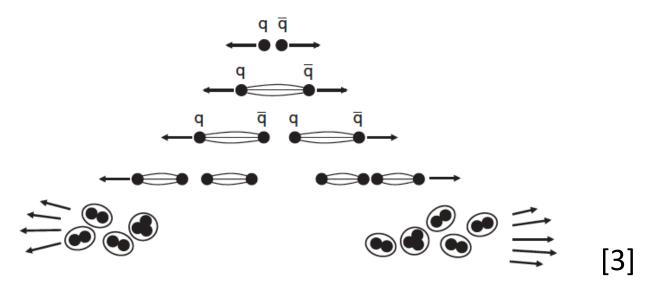
ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary									
St	atus: May 2019						$\int \mathcal{L} dt = 0$	3.2 – 139) fb ^{–1}	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb	- ¹] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow tt$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ e, \mu \end{array}$ $\geq 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $2J$ $\geq 1 b, \geq 1J$ $\geq 2 b, \geq 3$		36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp Ms Min Min Min Min Girk mass QKK mass 1.6 TeV Bick mass Size Size Size Size Size Size KK mass 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ n=6, \; M_D=3 \; \text{TeV, rot BH} \\ k/M_{PI}=0.1 \\ k/M_{PI}=1.0 \\ k/M_{PI}=1.0 \\ f/m=15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \to \text{tr})=1 \end{array}$	1711.03301 1707.04147 1703.09127 1806.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \mbox{ model } B \\ \text{HVT } V' \to WH/ZH \mbox{ model } B \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	1 e,μ 1 τ		– – Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 Tr Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.1 W' mass 3.7 TeV V' mass 3.6 TeV V' mass 3.6 TeV V' mass 3.6 TeV We mass 3.25 TeV We mass 5.0 TeV	O TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt		2 j 	- Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV		$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \textbf{40.0 TeV} & \eta_{LL}^- \\ C_{4t} = 4\pi \end{array}$	1703.09127 1707.02424 1811.02305
DM	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	M) 0 e,μ 0 e,μ	1 – 4 j 1 – 4 j 1 J, ≤ 1 j 1 b, 0-1 J		36.1 36.1 3.2 36.1	mend 1.55 TeV mend 1.67 TeV M_ 700 GeV med 3.4 TeV		$\begin{array}{l} g_{q}{=}0.25, \ g_{\chi}{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g{=}1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LO mass 1.4 TeV LO mass 1.56 TeV LQ [®] mass 1.03 TeV LQ [®] mass 970 GeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$VLQ BB \rightarrow Wt/Zb + X$		el	j Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{6,0} mass 1.64 TeV Y mass 1.64 TeV B mass 1.21 TeV Q mass 690 GeV		$\begin{array}{l} & \mathrm{SU(2)\ doublet} \\ & \mathrm{SU(2)\ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1,\ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1,\ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j –		139 36.7 36.1 20.3 20.3	q* mass 5.3 T q* mass 5.6 TeV b* mass 2.6 TeV c* mass 3.0 TeV v* mass 1.6 TeV	6.7 TeV TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	1 e, μ 2 μ 2,3,4 e, μ (SS 3 e, μ, τ - - - - - - - - - - - - - - - - - - -			79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass 560 GeV Ng mass 3.2 TeV H** mass 870 GeV H** mass 400 GeV monopole mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1		$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{t+} \to \ell_T) = 1$ DY production, $g_l = 5e$ DY production, $ g = 1g_D$, spin 1/2 DY production, $ g = 4E$ 0 Mass scale [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130


- A lot of model-dependent searches ongoing at ATLAS
- New limits on mass and life-time values with increasing precision
- But still, no proof of their existence

[1] ATLAS Collaboration,

Summary Plots for Exotics Heavy Particle Searches and Exotics/SUSY Long-lived Particle Searches. *ATL-PHYS-PUB*-2019-023, July 2019. url : http://cds.cern.ch/record/2682064?ln=en

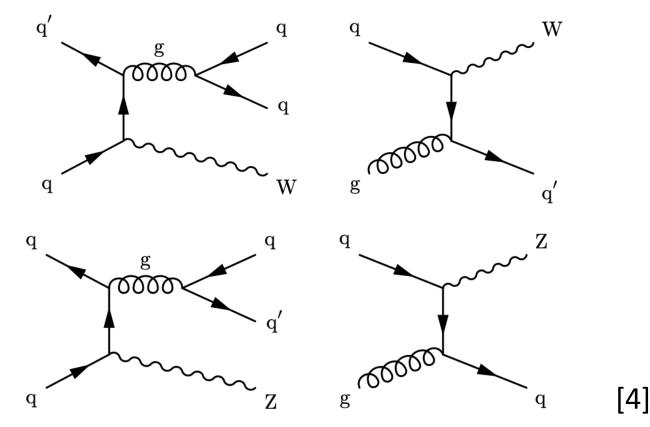
^{*}Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J).


The ATLAS Detector

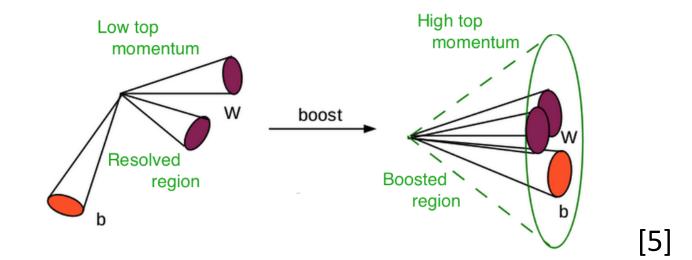
[2]

Jets in the Detector

A jet is a collimated flow of particles resulting generally from a high- p_T quark or gluon :



Jets happen a lot at the LHC (high center of mass energy)


Jets can be produced by multiple ways : parton (quark/gluon) collisions, or by the decay of a massive particle

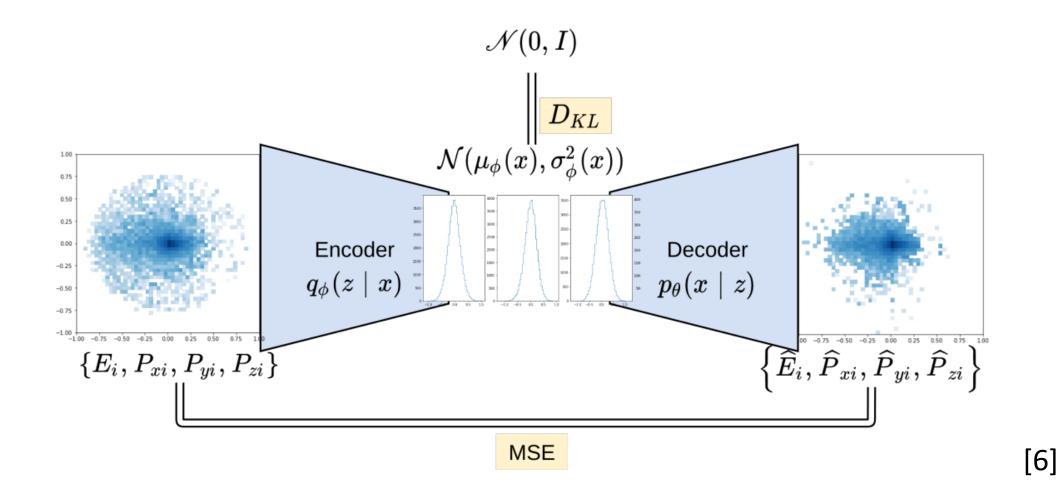
Jets in the Detector

Some massive particles (ex : W/Z) also decay to approximately 2/3 quarks and can form jets :

If the jets are produced with high momentum, their decay products can be collimated and they can be reconstructed inside a single (large-radius) jet.

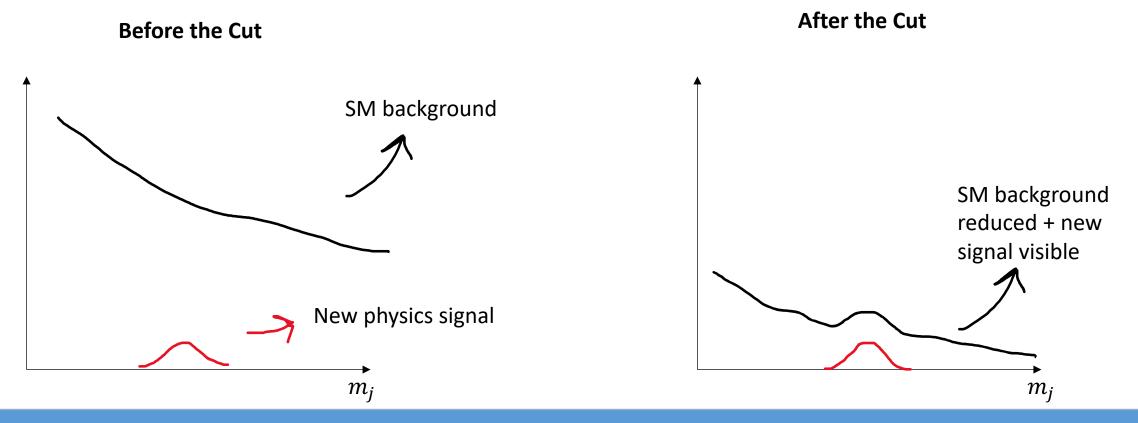
Why Jets ? Why Machine Learning?

First question :


- Are all jets produced at the LHC according to the SM?
- Are there unknown massive particles decaying to jets at the LHC?

Second question :

- All the events that happened at the LHC produce a whole lot of data : 60 TB/s produced, but 1.5 GB/s registered!
- General searches for new physics like in boosted jets over full p_T -spectrum have never been done


<u>The goal</u>: Search for new physics inside jets, but without searching for a specific model. <u>The method</u>: Use deep learning as an anomaly detection technique (unsupervised method)

Variational Auto-Encoder (VAE) for Jet Physics

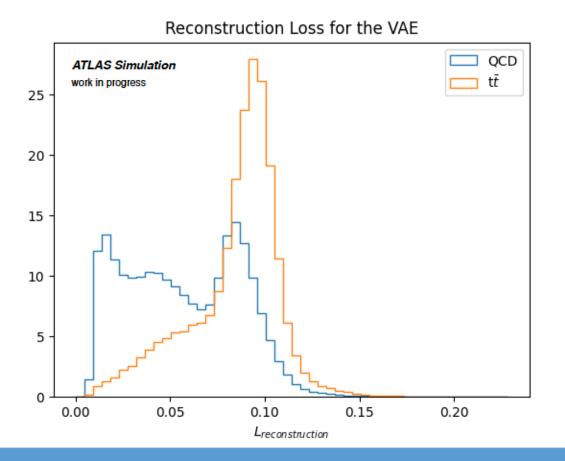
The Principle

For the first phase of the project, we will look for unknown massive particles decaying to jets. We will thus try to perform a "bump hunting" on the mass spectrum of jets by cutting on the anomaly score.

Jacinthe Pilette

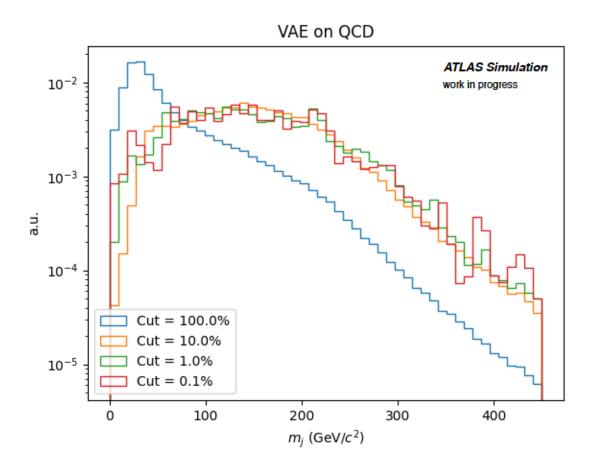
We want to know if our algorithm performs well. We choose a test signal to find : Our background : QCD dijets (gluon jet or light-quark jet, excluding top jets) Our signal : Boosted $t\bar{t}$ jets (from SM)

Simulated from Monte Carlo :


- Boosted jet (high-p_T) requirement :
 - $|\eta| < 2$, no leptons, N(jet), N(jets) with $p_T > 200$ GeV >= 2, N(jets) with $p_T > 450$ GeV >= 1
- We use only the leading large-radius jet

Our inputs are the 4-vectors of the jet constituents.

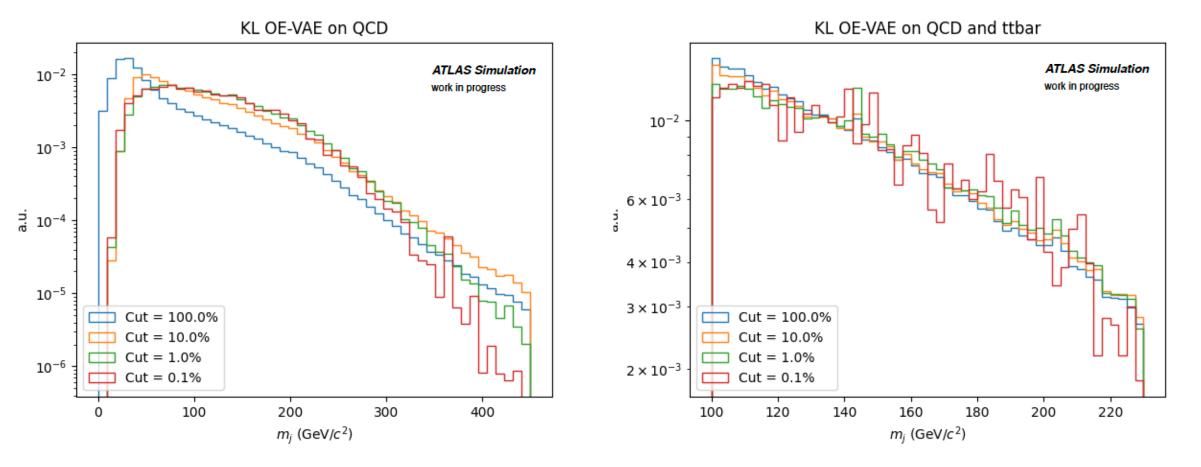
We compute the anomaly score between the VAE's output and the input.


Discrimination

Our model seems to discriminate reasonably well between our background and signal.

Mass Correlation

If we look at how our background behaves when we cut on the anomaly score:


Outlier Exposure

- Semi-supervised method.
- Inject some out of distribution samples to the training.
- The goal is that the VAE gain in sensitivity to outlier jets, and to decorrelate the jet mass from the anomaly score.
- To do this decorrelation, we reweight our outlier sample to match the mass spectrum of our QCD background. «This prevents the VAE from learning the mass of the jet as an important feature, and rather make it focus on the complexity of the jet itself.» [6]
- Outlier = boosted W jet sample

Preliminary Results

Background only (with mass decorrelation)

Background + signal

WNPPC 2021

Conclusion

- Machine learning could be a useful tool for general new physics searches in boosted jets
- Anomaly detection with unsupervised methods is a new and innovative way to search for new physics
- To suppress the dominant QCD background, we need better performance from our Variational Auto—Encoder with Outlier Exposure

References

[1] ATLAS Collaboration. (2019). Summary Plots for Exotics Heavy Particle Searches and Exotics/SUSY Long-lived Particle Searches. *ATL-PHYS-PUB*. url : http://cds.cern.ch/record/2682064?ln=en

[2] Pequenao, J. : Computer generated image of the whole ATLAS detector. 2008. url: https://cds.cern.ch/record/1095924.

[3] Quigg, C. : Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, 2sd edition, 1983

[4] Spettel, F. M. (2017). *Measurement of the boosted WW+WZ production cross section in the semileptonic decay channel with ATLAS* [PhD Thesis, Universität Tel Aviv]. CERN-THESIS-2017-072. http://cds.cern.ch/record/2271216

[5] Martínez Solaeche, G. : Top tagging at the LHC experiments with proton-proton collisions at 13 TeV. PhD thesis. 2015. doi: 10.13140/RG.2.1.4521.4560.

[6] Cheng, T., Arguin, J-F., Leissner-Martin, J., Pilette, J., Golling, T. : Variational Autoencoders for Anomalous Jet Tagging. arXiv:[hep-ph] : 2007.01850. 2020.