Long-Lived Particles
— Searching for new physics at the Energy Frontier —
Matthias Danninger
2021-01-12 — WNPCC 2021
Particle Physics has come a long way!

Event shows tracks produced in the 1200 litre Gargamelle bubble chamber that provided the first confirmation of a neutral current interaction (image: CERN)
H → e⁺e⁻μ⁻μ⁺ candidate event

...... to produce and observe this!
but how can we observe this?

Simulated Signal Event
Selectron Pair Production $\tilde{e} \rightarrow e\tilde{G}$

$m(\tilde{e}) = 500$ GeV, $\tau(\tilde{e}) = 1$ ns
Long-lived particles & other unconventional signatures

- Is new physics out of reach for the LHC?
- Have we looked in the wrong place so far?
• One simple Example: charged pion
 • Weak interaction
 (all others conserve quark flavour)
 • Decay is highly off-shell

• Variety of mechanisms possible:
 • small couplings, approximate symmetries, heavy mediator, lack of phase space, etc.
Long-lived particles

1. Where is the new physics
2. Analogy to SM
3. Bottom-up Theoretical Motivation
 • Why not the same in BSM theories?
4. Top-Down Theoretical Motivation
 • LLPs can arise in almost any BSM theory!

Images from arxiv1810.12602
1. Where is the new physics
2. Analogy to SM
3. Bottom-up Theoretical Motivation
 • Why not the same in BSM theories?
4. Top-Down Theoretical Motivation
 • LLPs can arise in almost any BSM theory!

Images from arxiv1810.12602
1. Where is the new physics
2. Analogy to SM
3. Bottom-up Theoretical Motivation
 • Why not the same in BSM theories?
4. Top-Down Theoretical Motivation
 • LLPs can arise in almost any BSM theory!
1. Where is the new physics
2. Analogy to SM
3. Bottom-up Theoretical Motivation
 • Why not the same in BSM theories?
4. Top-Down Theoretical Motivation
 • LLPs can arise in almost any BSM theory!
1. Where is the new physics
2. Analogy to SM
3. Bottom-up Theoretical Motivation
 • Why not the same in BSM theories?
4. Top-Down Theoretical Motivation
 • LLPs can arise in almost any BSM theory!
The (non-obvious) ATLAS experiment

Ionization loss: charge measured by:
- Pixel system
- Transition-Radiation Tracker (TRT)
- Monitored drift-tubes (MDT) in the muon system

Time of flight: time of arrival by
- Electromagnetic (EM) and Hadronic Calorimeters
- Muon system
How does long-live physics look like?

Experimentally, long-lived particles are an interesting challenge

- LLPs use all parts of the detector in ways they were not necessarily designed to be used.
Direct Searches

If LLP carries SM charge, we can look for its interactions with the detector directly
Analysis goals:
- Test for Dirac’s description of magnetic monopole
- Search for High Electric Charge Objects (Q-balls, micro black hole remnants)
- Striking experimental signature in ATLAS:
 - ~5000x more ionization loss in detector than MIP

$q_m = N g_{Dec}$,
$g_D = 1/(2\alpha) = 68.5$
Very Highly Ionizing Particles (HIPv)

Signal discriminating variables:
- Concentrated high energy deposition in the LAr EM calorimeter (w)
- TRT High Threshold hits (f_{HT})

Drift tubes: $\varnothing 4\text{mm}$, up to 1440mm length
- $\sim 298,000$ straws
- resolution of $130 \mu\text{m}$
Very Highly Ionizing Particles (HIPs)

- Signal discriminating variables:
 - Concentrated high energy deposition in the LAr EM calorimeter (w)
 - TRT High Threshold hits (f_{HT})
 - 0 events observed, expected 0.20 ± 0.11 (stat) ± 0.40 (sys)
- $|g| = 1g_D$ scalar monopole excluded up to 1850 GeV.
- ~5x improvement to the ATLAS Run1 result.
- Sensitivity comparable to MoEDAL.
Indirect Searches

Looking for SM decay products of LLPs
Indirect Searches for long-lived particles

ATLAS Inner Detector

Pixel

TRT

SCT

IBL

2021-02-12 | Matthias Danninger | SFU

Image credit: H. Oide
Why LLP searches use non-standard reconstructions?

If you want to reconstruct a charged particle with Impact Parameters \((d_0, z_0)\) outside the **prompt phase-space** —> you need special reconstruction
Why LLP searches use non-standard reconstructions?

If you want to reconstruct a charged particle with Impact Parameters (d_0, z_0) outside the prompt phase-space \rightarrow you need special reconstruction.

Why LLP searches use non-standard reconstructions?
Heavy Neutral Leptons a.k.a Sterile Neutrinos

Electrically neutral particle, mixing with SM neutrinos

⇒ HNL can decay to SM particles

- Study **on-shell W boson decays** to prompt leptons
- HNL decays to llv or lqq′
- \(m_{\text{HNL}} < m_W \) HNL becomes long-lived

\(l^\pm \)
\(\nu_{\alpha} \)
\(|U_{\alpha}| \)
\(N \)
\(|U_{\alpha}| \)
\(l^\pm, q \)
\(\nu_{\beta} \)
\(W^\pm \)
\(\nu_{\gamma}, \bar{q}' \)
• Default tracking on ATLAS turns off at $d_0 > 10\text{mm}$
• Computationally expensive; only available for 10% of data
• Default tracking on ATLAS turns off at $d_0 > 10\text{mm}$
• Computationally expensive; only available for 10% of data
Displaced Vertexing

We use these tracks (and standard tracks) to form displaced vertices

HNL search — Background estimated from same-sign 2-trk DVs
- Accidental tracks crossing events & Cosmics
- Less dominant are hadronic interactions in the material (leptons)
Heavy Neutral Leptons a.k.a Sterile Neutrinos

Unique sensitivity to HNL coupling strength in relatively low-mass region
Different detector systems — Different LLPs

e.g. for $<c\tau> = 5$ cm, $<\beta\gamma> \approx 30$

- 60% in calorimeters
- 13% in muon system
- 25% in tracker
- 1% "prompt"
- 1% outside the detector
- 25% in tracker
- 60% in calorimeters
- 13% in muon system
- 1% outside the detector

Images from H. Russell
Different detector systems — Different LLPs

- Displaced leptons, lepton-jets, or lepton pairs
- Displaced multitrack vertices
- Multitrack vertices in the muon spectrometer
- Meta-stable charged particles
- Trackless, low-EMF jets
- Emerging jets
- Non-pointing (converted) photons
- Disappearing or kinked tracks

For $\langle ct \rangle = 50$ cm, $\langle \beta \gamma \rangle \sim 30$

- 0.1% "prompt" in tracker
- 3% in calorimeters
- 15% in muon system
- 31% in calorimeters
- 51% outside the detector

Images from H. Russell
Is the Higgs the connection to the Hidden Sector?

Diagram:

- The diagram shows a process involving the Higgs boson, denoted as Φ, and fermions f, \bar{f}, and singlets s, with lines indicating possible decay channels.

- The text mentions the ATLAS collaboration, with limits on the decay $B_{\Phi \rightarrow ss}$.

- The ATLAS collaboration has set limits on the proper decay length, with different cases for $m_\Phi = 125$ GeV and $m_s = 5, 8, 15, 25, 40$ GeV.

So, why do I get excited about LLP searches in LHC Run 3 with ATLAS?
Long-lived particles (LLP)

- Is new physics out of reach for the LHC?
- Have we looked in the wrong place so far?

- LLPs is one promising direction to expand our searches
- Not a very mature field yet @ LHC
 —> Still plenty of room for creativity
- Theoretically well motivated!
Long-lived particles (LLP)

• Is new physics out of reach for the LHC?
• Have we looked in the wrong place so far?

• LLPs is one promising direction to expand our searches
• Not a very mature field yet @ LHC
 —> Still plenty of room for creativity
• Theoretically well motivated!

Search somewhere that is **important!**
Long-lived particles (LLP)

• Is new physics out of reach for the LHC?
• Have we looked in the wrong place so far?

• LLPs is one promising direction to expand our searches
• Not a very mature field yet @ LHC —> Still plenty of room for creativity
• Theoretically well motivated!

Search somewhere that is also **effective**
• Sensitivity scales linear with L in these searches so far
• Additional channels (e.g. HNL, tau, ..)

Search somewhere that is **important!**
Advances in detector performance

• Large-Radius Tracking so far very resource intensive and produces ~80% fake tracks

• Only available on 10% of data in Run 2

• Improvements ahead of Run 3 —> Significant speed up —> Significant fake reduction

• LLP becoming mainstream!!
Conclusions

- LLP searches are an exciting challenge in ATLAS (*no routine analysis!!*)
- We have enabled already a huge amount of new physics searches
- LLP searches still have huge potential to grow in ATLAS
- Exciting prospects for next LHC data taking run
 - We benefit from technical advances
 - New opportunities for discovery