Long-Lived Particles — Searching for new physics at the Energy Frontier — Matthias Danninger 2021-01-12 — WNPCC 2021

Particle Physics has come a long way!

Event shows tracks produced in the 1200 litre Gargamelle bubble chamber that provided the first confirmation of a neutral current interaction (image: CERN)

H—>eeµµ candidate event

.... but how can we observe this?

Simulated Signal Event Selectron Pair Production $\tilde{e} \rightarrow e\tilde{G}$

 $m(ilde{e}) = 500~{
m GeV}, au(ilde{e}) = 1~{
m ns}$ 2021-02-12 | Matthias Danninger |

Long-lived particles & other unconventional signatures

THIS IS WHERE YOU LOST YOUR new particle

NO, I LOST IT IN THE PARK. BUT THIS IS WHERE THE detector can look

Is new physics out of reach for the LHC? Have we looked in the wrong place so far?

SIMON FRASER UNIVERSITY

How to make Long-lived particles

- One simple Example: charged pion
 - Weak interaction (all others conserve quark flavour)
 - Decay is highly off-shell

- Variety of mechanisms possible:
 - small couplings, approximate symmetries, heavy mediator, lack of phase space, etc..

- 1. Where is the new physics
- 2. Analogy to SM
- 3. Bottom-up Theoretical Motivation
 - Why not the same in BSM theories?
- 4. Top-Down Theoretical Motivation
 - LLPs can arise in almost any BSM theory!

- 1. Where is the new physics
- 2. Analogy to SM
- 3. Bottom-up Theoretical Motivation
 - Why not the same in BSM theories?
- 4. Top-Down Theoretical Motivation
 - LLPs can arise in almost any BSM theory!

- 1. Where is the new physics
- 2. Analogy to SM
- 3. Bottom-up Theoretical Motivation
 - Why not the same in BSM theories?
- 4. Top-Down Theoretical Motivation
 - LLPs can arise in almost any BSM theory!

- 1. Where is the new physics
- 2. Analogy to SM
- 3. Bottom-up Theoretical Motivation
 - Why not the same in BSM theories?
- 4. Top-Down Theoretical Motivation
 - LLPs can arise in almost any BSM theory!

- 1. Where is the new physics
- 2. Analogy to SM
- 3. Bottom-up Theoretical Motivation
 - Why not the same in BSM theories?
- 4. Top-Down Theoretical Motivation
 - LLPs can arise in almost any BSM theory!

The (non-obvious) ATLAS experiment

Muon Detectors

Time of flight: time of arrival by • Electromagnetic (EM) and

- Hadronic Calorimeters
- Muon system

1

Ionization loss: charge measured by: • Pixel system Transition-Radiation Tracker (TRT) Monitored drift-tubes (MDT) in the muon system

How does long-live physics look like?

Experimentally, long-lived particles are an interesting challenge

• LLPs use all parts of the detector in ways they were not necessarily designed to be used

Direct Searches

If LLP carries SM charge, we can look for its interactions with the detector directly

Images from arxiv1810.12602

2021-02-12 Matthias Danninger | SFU

- Analysis goals:
 - Test for Dirac's description of magnetic monopole
 - Search for High Electric Charge Objects (Q-balls, micro black hole remnants)
- Striking experimental signature in ATLAS:
 - ~5000x more ionization loss in detector than MIP

 $q_{\rm m} = Ng_{\rm D}ec$, $g_{\rm D} = 1/(2\alpha) = 68.5$

SIMON FRASER **UNIVERSITY**

Simulated 1000GeV, 1gD magnetic monopole event in ATLAS

2021-02-12 Matthias Danninger | SFU

- Signal discriminating variables:
 - Concentrated high energy deposition in the LAr EM calorimeter (w)
 - TRT High Threshold hits (**f**_{HT})

- Drift tubes: Ø4mm, up to 1440mm length
- ~298,000 straws
- resolution of 130 µm

Matthias Danninger | SFU 2021-02-12

- Signal discriminating variables:
 - Concentrated high energy deposition in the LAr EM calorimeter (w)
 - TRT High Threshold hits (**f**_{HT})

• $|g| = 1g_p$ scalar monopole excluded up to 1850 GeV. • ~5x improvement to the ATLAS Run1 result. • Sensitivity comparable to MoEDAL.

Indirect Searches Looking for SM decay products of LLPs

SFL

Why LLP searches use non-standard reconstructions?

outside the prompt phase-space —> you need special reconstruction

If you want to reconstruct a charged particle with Impact Parameters (do,zo)

UNIVERSITY

 Default tracking on ATLAS turns off at d₀ > 10mm Computationally expensive; only available for 10% of data

> Matthias Danninger | SFU 2021-02-12

to form displaced vertices

Different detector systems — Different LLPs

Different detector systems — Different LLPs

Is the Higgs the connection to the Hidden Sector?

So, why do I get excited about LLP searches in LHC Run 3 with ATLAS?

Long-lived particles (LLP)

- Is new physics out of reach for the LHC?
- Have we looked in the wrong place so far?

- LLPs is one promising direction to expand our searches
- Not a very mature field yet @ LHC —> Still plenty of room for creativity
- Theoretically well motivated!

SIMON FRASER **UNIVERSITY**

Long-lived particles (LLP)

- Is new physics out of reach for the LHC?
- Have we looked in the wrong place so far?

- LLPs is one promising direction to expand our searches
- Not a very mature field yet @ LHC —> Still plenty of room for creativity
- Theoretically well motivated!

UNIVERSITY

Long-lived particles (LLP)

- Is new physics out of reach for the LHC?
- Have we looked in the wrong place so far?

- LLPs is one promising direction to expand our searches
- Not a very mature field yet @ LHC —> Still plenty of room for creativity
- Theoretically well motivated!

Advances in detector performance

Step 1: tracks from origin **Step 2**: large-radius tracks **Step 1**: tracks from origin

2021-02-12 Matthias Danninger | SFU

- Large-Radius Tracking so far very resource intensive and produces ~80% fake tracks
- Only available on 10% of data Run 2
- Improvements ahead of Run 3 —> Significant speed up
 - —> Significant fake reduction
- LLP becoming mainstream!!

SIMON FRASER **UNIVERSITY**

Step 2: large-radius tracks

ta	In

- LLP searches are an exciting challenge in ATLAS (no routine analysis!!)
- We have enabled already a huge amount of new physics searches
- LLP searches still have huge potential to grow in ATLAS
- Exciting prospects for next LHC data taking run
 - We benefit from technical advances
 - New opportunities for discovery

