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Studying Astrophysical Neutrinos

The weakly interacting nature of neutrinos makes them great candidates for studying
the physics behind violent astrophysical phenomena

Recent observations using neutrino telescopes such as IceCube have thoroughly
cemented the physics potential of neutrino astronomy

Neutrino cross section with Earth increases with neutrino energy. The Earth ends up
shielding observatories from high energy neutrinos

Development of more observatories leads to increased sky coverage and an increased
rate of event observations



What is P-ONE?

® Proposed cubic-kilometer scale neutrino telescope in the Pacific Ocean

e Make use of existing Ocean Networks Canada (ONC) infrastructure
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The STRAW Pathfinder

® Deployed in the Cascadia Basin to study site
characteristics

o  Scattering length
o  Absorption length
o Ambient undersea background

e System of two mooring lines equipped with

o Light flashing modules (POCAM)
o  Light sensing modules (SDOM)

e Understanding background is important for
future event trigger development

STRAW schematic [2]
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Potassium Decay Noise Study



Radioactive Potassium Background

e Radioactive isotopes in saltwater undergo 3 decay producing electrons which can emit

Cherenkov radiation. Potassium is a significant contributor to this decay noise

WK 490 Ca+e + 1,

e Unlike other stochastic noise sources, the potassium background is constant

e Simulate potassium activity around STRAW and compare to measured data



Coincident Detections

® Look for signals on adjacent PMTS that arrive at roughly the same time
e Plotting the coincidence rate per time differential should give a gaussian peaked at 0

e Compare STRAW coincidence analysis with simulation to verify simulation input

parameters A
Y

6 I Example coincidence event
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Finding Coincidences in STRAW Data



STRAW SDOM Measurements

e Potassium noise contributes to the low noise baseline in STRAW data
e For potassium coincidences, consider data from times of low hit rate (1-20 counts/ms)
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STRAW Coincidence Fit

e Data collected from multiple SDOMs over 5 months in the summer of 2020
e About 16 hours of data collection analyzed for coincidences

e Considering only coincident hits with At <+25 ns
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Simulating Potassium Activity



Simulation - Modeling

e Model an SDOM in Geant4 inside a spherical world of sea water

® Generate electrons throughout the 25 m radius spherical volume based on the rate of
potassium activity in the Cascadia Basin

Geant 4 simulation world
model

SDOM PMT housing Geant4 model
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Simulation - Angular Acceptance

® The SDOM geometry is not ideal for making coincident measurements because most

coincident photons are going to be arriving at large angles
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Simulation - Inputs

® Inputs into simulation and analysis include
o  Absorption length in water
o  Glass and gel transmittance
o  PMT geometry
o PMT quantum efficiency
o PMT transit time ~ 6.5 ns
o  DAQ trigger efficiency ~ 85%
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Simulated Coincidence Fit

® Ran electron generation simulation using a single SDOM at the centre of the water
volume

e Total of about 2.7 minutes of data simulated in Geant 4
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Systematic Error Analysis



Potential Sources of Error

® Sources of systematic error considered

o  Angular acceptance
0 Quantum efficiency
o  Absorption length

o  Transit time

® First three factors come in as a multiplicative scaling term for counts on each PMT

e Total error is obtained from summing the relative errors in quadrature
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Angular Acceptance Error

e Dominant simulation error

® Assumed symmetrized error band
based on the ratio of the simulated
fit to the measured fit

Simulated F'it
Measured Fit

Error =1 —

e Fit a polynomial to relative error
points and assumed constant error
beyond measured data
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Analysis Results



Comparing Gaussian Fits Including Error

® Removing the baseline so that only true coincidences are considered, we can
compare the fits including a final systematic error band
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Detector Effective Volume and Ocean Salinity

ng

: _ _ 3
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® From Ocean Networks Canada (ONC) the Pacific Ocean salinity should be roughly
constant at 3.482 % [7]
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Conclusions

e Simulation based on measured in situ inputs confirms validity of model undersea
environment

® Successful closure check showing that simulations using measured parameters and
natural potassium match directly observed site characteristics

e Direct confirmation that the water properties found using POCAM flashes are correct

e Understanding the water properties in the Cascadia Basin is critical for future
developments of P-ONE
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Coincidence Fit Without Smear Variation

® Gaussian fit without smear variation. These fits were used for integrating during
effective volume calculations

P—ONE Preliminary Coincidence Comparison Without Smear Variation
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Systematic Error Comparison

e Plot of all relative systematic errors normalized to the dominant error

e Error dominated by uncertainty in angular acceptance
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Angular Acceptance Error

e Added a symmetrized error band
based on the ratio of the simulated
fit to the measured fit

Simulated F'it
Measured Fit

Error =1 —

e Fit a 4th order polynomial to the
relative error points and assumed
constant error beyond measured
data points
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Quantum Efficiency Error

® Error band based off of KM3NeT PMT 0.20{
characterization [6] 4 0.15-
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e Relative error found by ratio of
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Absorption Length Error

® Scaled by ratio of exponential decays
based on absorption length assuming

P—ONE Preliminary Absorption Lengths
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Transit Time Error

® The time it takes for the PMT to output a signal from an incident photon is
dependent on where the photon hits the PMT

® Need to add gaussian smearing to simulation data

® Appropriate smearing for large angles measured to be about 6.5 ns for the nominal
case but we apply an error of £ 1 ns
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ONC Cascadia Basin Water Properties
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documentation for details.
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