Arthur B. McDonald

UNIVERSITY OF ALBERTA

Canadian Astroparticle Physics Research Institute

Particle physics at extreme energies using neutrino telescopes Juan Pablo Yáñez j.p.yanez@ualberta.ca

why detecting high energy neutrinos?

neutrino sources

-naturally occurring neutrinos can have extreme energies

-manmade beams can reach E ~ 50 GeV at most

-but the fluxes are low, so you need really large detectors

studying their sources

neutrino telescope basics

interaction mainly with single quarks in nucleons – simple and well understood

-detection via Cherenkov light -large, natural & transparent medium -3D array of sensors -deep underground

detect neutrinos from all directions starting at a few GeV -atmospheric -astrophysical -cosmogenic -others

-muons travel from tens of meters to several km -other particles shower

sparsely instrumented detectors work

-muons travel from tens of meters to several km -other particles shower

sparsely instrumented detectors work

neutrino telescopes history

DUMAND in Hawaii first proposed in 1973

1 km³ of ice monitored by 5000+ photo-sensors buried 1.5 km under the

surface

IceCube two regions

IceCube 17m spacing in z 125m in x-y

DeepCore 7m in z, 40-70m in x-y

I⇔L → → → ↓ T ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
NuMuBar -> MuPlus + DeltaE + DeltaE + DeltaE + EPlus + Gamma + Neutron + Ne
Type : NuMuBar
Energy: 7.34e+01GeV
Type : MuPlus
Energy: 5.22e+01GeV
Type : PiPlus Energy: 9.93e+00GeV
·፲· · · · · · · · · · · · · · · · · · ·
┇┇ ┽ ┽ ┇ ┿ _ ┽ ┇ ┿ _ ┼ │ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
IĨ T + + + + + + + + + + + + + +
¦ŤĨ → IŤ++ TĬ↓+ +++ →+ J ∄+I ¶L I T _ ++
┟╇╶ <u></u> ╴╶┟╴┥╶┇┇┿╴╶┇┽╶┊╶┇┿╶╴╎╽╴╶┧╶┥╴╴┊╟┤

l t

41 I

neutrino physics with lceCube

oscillation parameters

atmospheric neutrino oscillations -crucial in discovery of neutrino mass -Nobel prize 2015 -still being understood

$$P_{\nu_{\alpha} \to \nu_{\beta}}^{2\nu}(L,E) = \sin^{2}(2\theta) \sin^{2}(\frac{\Delta m^{2}}{4E}L)$$
$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

neutrino oscillations & DeepCore

tau neutrino appearance

disappeared muon neutrinos mainly go to tau neutrinos -tau lepton E threshold → only HE detection -test of unitarity of PMNS matrix -test of NuTau CC cross section

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_{\tau}\\\nu_{\tau}\end{array}\right) = \left(\begin{array}{ccc}U_{e1}&U_{e2}&U_{e3}\\U_{\mu1}&U_{\mu2}&U_{\mu3}\\U_{\tau1}&U_{\tau2}&U_{\tau3}\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

HESE with ternary topology ID	$\nu_e: \nu_\mu: \nu_\tau \text{ at source} \to \text{ on Earth:}$
★ Best fit: $0.20 : 0.39 : 0.42$	$\bullet 0:1:0 \to 0.17: \ 0.45: \ 0.37$
Global Fit (IceCube, APJ 2015)	• $1:2:0 \rightarrow 0.30: 0.36: 0.34$
Inelasticity (IceCube, PRD 2019)	▲ $1:0:0 \to 0.55: 0.17: 0.28$
3ν -mixing 3σ allowed region	◆ $1:1:0 \rightarrow 0.36 : 0.31 : 0.33$

sterile neutrino searches

some odd neutrino results suggest extra neutrinos that you can obtain via oscillations, but do not interact directly with the world (sterile)

NTs can probe this hypothesis with high precision

EHE neutrino cross section

the challenges of IceCube data

Events per 2078 Days

the challenges to its operation & construction

Water km³ scale neutrino telescopes under construction

-Km3NeT – Mediterranean sea -GVD-Baikal – Lake Baikal

serious technical challenges in deployment and operations – salt water is tough

enters Ocean Networks Canada

established in 2007 operates Ocean observatories provides deep sea research infrastructure

v Line Papa

UofA & TUM researchers established cooperation in 2017

"potential installation"

first step forward: P-ONE Pacific Ocean Neutrino <u>Explorer</u>

-200 modules -10 strings/lines -order 100m spacing -exploring potential for: tau neutrinos charm production exotic oscillations

first step forward: P-ONE Pacific Ocean Neutrino <u>Explorer</u>

-200 modules -10 strings/lines -order 100m spacing -exploring potential for: tau neutrinos charm production exotic oscillations

and after P-ONE?

an array large enough to see TeV-PeV events with large statistics:

- do real neutrino astronomy
- study extreme high energy interactions

thank you

questions?

backup

detect muons from cosmic ray showers "above" the detector

lots of them 2 kHz rate in IceCube

dominant interaction channel is deep inelastic scattering – well understood

non-standard interactions

mediated by non-SM bosons modify neutrino rates at all energies

oscillation parameters

sterile neutrino searches

44

sterile neutrino searches

some experiments have obtained odd neutrino results a potential explanation: extra neutrinos that you can obtain via oscillations, but do not interact directly with the world (sterile)

NTs can probe this hypothesis with high precision

CR composition around the knee

origin of the CR knee is unknown change in composition or acceleration mechanism?

CR composition around the knee

muon multiplicity can differentiate between heavy/light nuclei

prompt muon production

prompt decay of charm+unflavored mesons -still unobserved -main background for astrophysical neutrinos

SIBYLL2.3c

Fedynitch, arXiv:1806.04140

neutrino detection

neutrino sources

-relic neutrinos from the early Universe -solar neutrinos -neutrinos from supernova -atmospheric neutrinos -cosmic HE neutrinos