⁶⁵Zn: A Measurement of Electron-Capture Decays Using Data from the KDK Experiment

Lilianna Hariasz

(Queen's University) On behalf of the KDK collaboration

Winter Nuclear & Particle Physics Virtual Conference February 11, 2021

Uses

- Common gamma calibration source
- Tracer (medicine, biology)

Data, Advantages

- Data from KDK experiment
- Setup allows for measurement of EC branches
- High gamma-tagging efficiency $(\sim 98\%)$
- KDK Instrumentation Paper Pre-Print Available At: **arXiv:2012.15232** [1]

Novel measurement of $\rho \equiv BR_{EC}/BR_{EC*}$

KDK: Potassium (K) Decay (DK)

KDK is measuring ρ for ${}^{40}\mathrm{K}$

Datasets

- $\bullet\,$ Data was obtained using $^{40}{\rm K},\,^{54}{\rm Mn},\,^{65}{\rm Zn},\,^{88}{\rm Y}$ sources
- all for energy calibration
- $\bullet~^{54}\mathrm{Mn}$ for efficiency calibration
- $\bullet~^{40}\mathrm{K},~^{65}\mathrm{Zn},$ and $^{88}\mathrm{Y}$ for physics results

$^{40}\mathrm{K}$

- $0.0117(1)\%^{[2]}$ $^{40}\mathrm{K}$ in $^{\mathrm{nat}}\mathrm{K}$ (in NaI)
- NaI commonly-used in dark matter searches, e.g. DAMA/LIBRA
- 3 keV X-ray/Auger from EC decay is in expected DM-detection signal region [3]
- ⁴⁰K also of interest in geochronology [4]

Unblinded 65 Zn dataset is being used to test methods for main 40 K analysis.

Branching ratios are calculated from measurements and theoretical values. No experimental result has probed electron-capture to the ground state (\equiv EC) and excited state (\equiv EC^{*}) branches simultaneously.

	National Nuclear	Table of
	Data Centre	Radionuclides
BR_{EC}	48.54(7)%	48.35(11)%
${\rm BR}_{{\rm EC}^*}$	50.04(10)%	50.23(11)%
ρ	0.9700(24)	0.9626(30)

Agreement within 2σ between National Nuclear Data Center [5] and Table of Radionuclides [6].

KDK Setup I

• EC event:	• EC* event:
x-ray	x-ray & gamma

Inner Silicon Drift Detector (SDD) (MPP/HLL Munich) detects x-rays Outer Modular Total Absorption Spectrometer (MTAS) (Oak Ridge National Laboratory) detects gammas

(Electronic support: TRIUMF)

KDK measures $\rho = BR_{EC}/BR_{EC*}$

KDK Setup II (arXiv:2012.15232)

⁶⁵Zn Coincidence Histogram

SDD/MTAS Coincidence - 65Zn MTAS Energy [MeV] 10⁴ 10³ Ξ 10² 10 $\overline{0}$ 2 6 8 10 12 14 Δ SDD Energy [keV]

Analysis Procedure, SDD Spectra

- Fit coincident & uncoincident spectra simultaneously
- Oivide signal counts in uncoincident & coincident spectra

SDD resolution: $198\,{\rm eV}$ FWHM at $8\,{\rm keV}$

Fit accounts for false positives and negatives Notably: <100% MTAS efficiency, EC coincidence with MTAS background

Simulating MTAS (Gamma-Tagging) Efficiencies, ⁵⁴Mn

Measured and simulated 835 keV (⁵⁴Mn) efficiencies are used to determine those of 1115 keV (⁶⁵Zn). Comparison of data + simulation for ⁶⁵Zn is shown.

65 Zn Spectrum Fit

Various background models are currently being studied.

Preliminary ⁶⁵Zn ρ Results

Coincidence window dependency

- *ρ* should be independent of coincidence window
- False negative corrections resolve unphysical CW-dependency

Currently finalizing false positives and & negatives

- KDK is measuring several rare decays, with results applicable to many fields
- $\bullet\,$ The $^{65}{\rm Zn}$ dataset obtained as part of KDK is being used to test analysis methods, and to obtain physics results
- $\bullet\,$ The apparatus, featuring a high-efficiency gamma detector and high-resolution x-ray detector, provides a novel measurement method for $^{65}{\rm Zn}$ decays
- False positive and false negative corrections are ongoing
- Final results to be published in the near future

N. Brewer¹, H. Davis^{2,3}, P.C.F. Di Stefano⁴, E. Lukosi^{2,3}, B.C. Rasco¹, K.P. Rykaczewski¹, M. Stukel⁴, and the KDK Collaboration

¹Oak Ridge National Laboratory Physics Division, Oak Ridge, TN, U.S.A, ²Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA, ³Joint Institute for Nuclear Physics and Applications, Oak Ridge, TN, U.S.A, ⁴Queen's University, Kingston, Ontario, Canada

 M. Stukel, B. C. Rasco, N. T. Brewer, P. C. F. Di Stefano, K. P. Rykaczewski, H. Davis, E. D. Lukosi, L. Hariasz, M. Constable, P. Davis, K. Dering, A. Fijałkowska, Z. Gai, K. C. Goetz, R. K. Grzywacz, J. Kostensalo, J. Ninkovic, P. Lechner, Y. Liu, M. Mancuso, C. L. Melcher, F. Petricca, C. Rouleau, P. Squillari, L. Stand, D. W. Stracener, J. Suhonen, M. Wolińska-Cichocka, and I. Yavin. A novel experimental system for the kdk measurement of the ⁴⁰k decay scheme relevant for rare event searches.

arXiv:2012.15232, 2020.

Jun Chen.
 Nuclear data sheets for a= 40.
 Nuclear Data Sheets, 140:1–376, 2017.

 [3] Josef Pradler, Balraj Singh, and Itay Yavin.
 On an unverified nuclear decay and its role in the dama experiment. *Physics Letters B*, 720(4-5):399–404, 2013. [4] Jack Carter, Ryan B Ickert, Darren F Mark, Marissa M Tremblay, Alan J Cresswell, and David CW Sanderson.
 Production of 40 Ar by an overlooked mode of 40 K decay with implications for K-Ar geochronology.

Geochronology, 2(2):355-365, 2020.

- [5] E. Browne and J.K. Tuli.
 Nuclear Data Sheets for A = 65.
 Nuclear Data Sheets, 111(9):2425-2553, September 2010.
- [6] M. M. Bé, V. Chisté, C. Dulieu, E. Browne, C. Baglin, V. Chechev, N. Kuzmenco, R. Helmer, F. Kondev, and D. MacMahon. Table of Radionuclides (vol. 3–A= 3 to 244). *Monographie BIPM*, 5, 2006.

- [7] P. C. F. Di Stefano, N. Brewer, A. Fijalkowska, Z. Gai, K. C. Goetz, R. Grzywacz, D. Hamm, P. Lechner, Y. Liu, and E. Lukosi. The KDK (potassium decay) experiment. In *Journal of Physics: Conference Series*, volume 1342, page 012062. IOP Publishing, 2020.
- [8] Marie-Martin Be, Venassa Chiste, C Dulieu, X Mougeot, V Chechev, F Kondev, A Nichols, X Huang, and B Wang. Table of radionuclides (comments on evaluations). *Monographie BIPM-5*, 7, 1999.

Extra Slides

Extra - Main Analysis $({}^{40}K)$ Description

Decay Channels:

- \bullet Primarily β^- to ${\rm ^{40}Ca}$
- Electron capture to either excited or ground state of $^{40}\mathrm{Ar}$
- Small β^+ to ⁴⁰Ar branch

EC As A Background

- EC and EC* events emit low-energy x-rays/Auger electrons in expected DM-detection signal region
- EC event: no high-energy gamma ray \implies difficult to veto the event
- $\bullet\,$ Need to accurately know ${\rm BR}_{\rm EC}$
- Never experimentally-measured

 BR_{EC} value is theoretical

False-Negative Corrections

EC-triggered events in coincident spectrum

Sources

- EC coincident with MTAS background
- **2** Source coincidence $(EC + EC^*)$

Probability that EC "looks like" an EC*: 0.0245(1) at the 4 µs CW

Extra - Literature BR_EC Values for $^{40}\mathrm{K}$

Log(ft) is commonly-used, but disagrees with 2017 NNDC value. Current half-life measurements are not precise enough to provide sufficient BR_{EC} estimation.

KDK measurement was suggested by Pradler et al.¹

$$\begin{array}{rll} \mbox{Log(ft):} & \mbox{BR}_{\rm EC} = 0.2(1)\%^2 \\ & \mbox{NNDC:} & \mbox{BR}_{\rm EC} = 0.045(6)\%^3 \\ & \mbox{BR}_{\rm EC} = 0.8(8)\%^1 \end{array}$$

¹Pradler, Josef, Balraj Singh, and Itay Yavin. "On an unverified nuclear decay and its role in the DAMA experiment." Physics Letters B 720.4-5 (2013): 399-404.

²Be, Marie-Martin, et al. "Table of Radionuclides (Comments on evaluations)." Monographie BIPM-5 7 (1999).

³Chen, Jun. "Nuclear Data Sheets for A= 40." Nuclear Data Sheets 140 (2017): 1–376.

Extra - Impact of Background on Annual Modulation

Total rate:

$$R(t) = B_0 + S_0 + S_m f(t)$$

 B_0 : background S_0 : unmodulated dark matter $S_m f(t)$: time-dependent dark matter signal $R_0 \equiv B_0 + S_0$: measured time-independent rate

Modulation fraction:

$$s_m = \frac{S_m}{S_0} = \frac{S_m}{R_0 - B_0}$$

 B_0 affects s_m result, while feasibility can be assessed via theoretical DM models

- \bullet Blue: $^{54}{\rm Mn}$ 4 μs data
- Red: total fit, with components:
 - Black: simulated 835 keV spectrum
 - Teal: measured MTAS background
 - Green: gamma+BG convolution (black+teal)
 - Pink: gamma+gamma convolution (black+black)

- 19 NaI(Tl) hexagonal volumes
- $\bullet\,\sim 53~{\rm cm}\,\times\,18~{\rm cm}$
- Inner, Middle Outer: one PMT at each end
- Center: 6 PMTs on each end, hole through center for source
- total mass ~ 1 ton
- $\sim 4\pi$ coverage
- surrounded by lead shielding

Extra - SDD Details

- Increasingly-biased p⁺ rings
- Planar cathode
- Central n⁺ anode is at potential minimum
- Gate of field-effect transistor (FET) connected to anode

MTAS Insert

- Contains SDD + source
- 2mm width except for endcap
- Endcap is 30cm long, 0.63mm thick to reduce scattering

Extra - MTAS BG

Peaks: $^{40}{\rm K}$ (1460 keV), $^{214}{\rm Bi}$ (1760 keV), $^{208}{\rm Tl}$ (2614 keV), $^{127}{\rm I}$ & $^{23}{\rm Na}$ neutron captures (6800 keV).

Extra - False Negatives

EC in coincidence with a background in MTAS:

$$\psi_B = BT \tag{1}$$

T=CW, B = 2641.00(26) Hz is the rate of background events in MTAS. Using convolutions of MTAS background with ⁵⁴Mn, a collaborator obtained ψ_B values.

Source $(EC + EC^*)$ coincidence:

$$\psi_{\rm EC^*} = \epsilon A({\rm BR}_{\rm EC^*})\mu_x T \tag{2}$$

A = 536(23) Bq is source activity, BR_{EC*} = 50.04(10) %, μ_x is probability of missing EC* x-ray (sims.).

Source (EC + β^+) coincidence:

$$\psi_{\beta^+} = \epsilon \mathcal{A}(\mathcal{B}\mathcal{R}_{\beta^+})\mu_{\beta^+}T \tag{3}$$

 β^+ annihilates to two 511 keV gammas. BR $_{\beta^+} = 1.421(7) \%$, μ_{β^+} is probability β^+ is missed by SDD (sims.). $\epsilon \approx 1$

Extra - False Negative Corrections Details

T' (µs)	$(1 - \eta_x)$	$\begin{array}{c} T_{avg} \\ (\mu s) \end{array}$	ψ_B	ψ_{EC^*}	Ψ
1	0.799(25)	2.66(5)	0.0071(1)	0.00057(1)	0.0076(1)
2	0.749(28)	4.64(3)	0.0123(1)	0.00093(1)	0.0132(1)
4	0.750(21)	8.67(4)	0.0227(1)	0.00174(1)	0.0245(1)