WNPPC 2021

SIMULATING DAEMON (<u>D</u>ETECTOR <u>ARRAY FOR ENERGY M</u>EASUREMENTS <u>O</u>F <u>NEUTRONS</u>): A NEW COMPLEMENTARY NEUTRON DETECTOR FOR GRIFFIN

HARRIS BIDAMAN UNIVERSITY OF GUELPH

BACKGROUND

Beta Delayed Neutron Emission

C. Weber et al., Nuclear Physics A 803, 1 (2008)

- Studying neutron rich nuclei is the at the forefront of nuclear physics research
- As the ratio of neutrons (N) to protons (Z) increases, the valence neutrons become less bound which can give rise to beta delayed neutron emission

BACKGROUND

Image from: http://www.phys.utk.edu/expnuclear/nucastro.html

TRIUMF

Canada's particle accelerator centre

- Strong campaign studying neutron rich nuclei at TRIUMF
 - Via beta decay and beta delayed neutron spectroscopy

TRIUMF

Canada's particle accelerator centre

- Strong campaign studying neutron rich nuclei at TRIUMF
 - Via beta decay and beta delayed neutron spectroscopy

GRIFFIN+DESCANT

Experimental Setup

- GRIFFIN (<u>Gamma-Ray</u> Infrastructure <u>For</u> <u>Fundamental Investigation</u> of <u>Nuclei</u>)
- DESCANT (<u>DE</u>uterated <u>SC</u>intillator <u>Array</u> for <u>Neutron Tagging</u>)
- In addition there are beta particle detectors and positions for other ancillary devices are available

GRIFFIN+DESCANT

Experimental Setup

- DESCANT has good neutron detection efficiency, but at the expense of precision on the neutron kinetic energy an important quantity for beta delayed neutron emitters!
- Want to create a neutron detector array that can measure neutron energy with high precision that would be compatible with GRIFFIN and DESCANT

GRIFFIN+DESCANT

Experimental Setup

- Good neutron energy resolution could be obtained through the addition of an <u>array of plastic</u> <u>scintillators</u> potentially placed in front of DESCANT
 - DAEMON (<u>Detector Array</u> for <u>Energy Measurements Of</u> <u>N</u>eutrons)
 - Plastic scintillators have good timing resolution, are inexpensive, and can be customized into nearly any shape

• Energy can be determined via Time-of-Flight technique

TIME OF FLIGHT TECHNIQUE

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m\frac{L^2}{TOF^2}$$

- Get TOF from 2 separate detectors that act as a stopwatch
- Good TOF energy resolution requires thin detectors
- Good efficiency requires thick detectors
- Detector geometry must be optimized

$$\left(\frac{\Delta E}{E}\right)^2 = \left(\frac{2\Delta L}{L}\right)^2 + \left(\frac{2\Delta TOF}{TOF}\right)^2$$

TIME OF FLIGHT TECHNIQUE

$$\left(\frac{\Delta E}{E}\right)^2 = \left(\frac{2\Delta L}{L}\right)^2 + \left(\frac{2\Delta TOF}{TOF}\right)^2$$

• DESCANT TOF energy resolution dominated by detector thickness

$$\frac{\Delta E}{E} \propto \frac{\Delta L}{L} = \frac{15 \ cm}{50 \ cm} = 30 \ \%$$

• DAEMON energy resolution simulated to be 6.5% at 1 MeV with a the 1.5 cm thick scintillator

Detector Geometry

- GEANT4 is a toolkit for simulating particles passing through matter
 - Monte-Carlo technique
 - Ideal for designing and optimizing new detector concepts

Detector geometry optimized to fit on the inside of DESCANT. Optical physics is incorporated into simulation. **TOF** is then determined by collecting optical photons in both SiPM's

1.5 cm thick and approximately 5.5 cm wide

Detector geometry is being optimized to fit on the inside of DESCANT with GRIFFIN.

1 optical photon threshold and 2 different arrays of SiPMs are required to fire to register event

DAEMON +GRIFFIN + DESCANT with condition of 2 different arrays of SiPMs required to fire to register event

Beta Delayed Neutron Emission

1 optical photon threshold and 2 different arrays of SiPMs are required to fire to register event

1 optical photon threshold and 2 different arrays of SiPMs are required to fire to register event

CONCLUSION & NEXT STEPS

- DAEMON is able to increase precision to the neutron kinetic energy in the presence of GRIFFIN and DESCANT compared to the pre-existing setup
- Detector geometry has been designed to maximize performance and minimize cost
- Prototype construction and comparing results to simulation

THANK YOU

Collaborators University of Guelph Paul Garrett Carl Svensson Vinzenz Bildstein Alex Laffoley Allison Radich Colorado School of Mines Fred Sarazin Steven Shadrick

GRIFFIN + DESCANT Collaborations
UNIVERSITY
of GUELPH

TOF DETERMINATION

Time determined to be 35.3 ns in this case. This is done for both SiPM arrays

$$t_{scatter} = t_{avg} - \frac{t_{Max}}{2}$$

TOF DETERMINATION

DETECTOR THICKNESS

DETECTOR THICKNESS

WIDTH OF BARS

10 Detectors Across

20 Detectors Across

POSITION RESOLUTION

Arc Length (S) Between Calculated and Actual Scatter Position Within Bars

- X is assumed to be centre of detector.
- Y is calculated via SiPM time when both fire.
- Radial distance (r) is assumed to be middle of detector.
- Z is calculated using x, y, and r.

- ★ Calculated scatter position
- $\Leftrightarrow \quad \text{Actual scatter position}$

Arc Length (S) Between Calculated and Actual Scatter Position Within Bars

ENERGY SPECTRA

1 optical photon threshold and 2 different arrays of SiPMs are required to fire to register event

ENERGY SPECTRA

Scintillator in vacuum, neutrons shot at a 1cm thick, 8 cm wide detector, using a threshold of 1 optical photons detected in each SiPM

DETECTOR CONFIGURATION COMPARISONS
TILE CONFIGURATIONS

1.5 cm thick

With SiPMs on the front of detector

With no SiPMs on the front of detector

DIFFERENT SIPM CONFIGURATIONS

1.5 cm thick

CONFIGURATION COMPARISON

CONFIGURATION COMPARISON

TOF SPECTRA

1 optical photon threshold and 2 different arrays of SiPMs are required to fire to register event

TOF SPECTRA

firing condition, 1 optical photon threshold

Full setup, 1 optical photon threshold and 2 different arrays of SiPMs are required to fire to

OPTICAL PHYSICS AND MATERIALS

TOF DETERMINATION

Time determined to be 35.3 ns in this case. This is done for both SiPM arrays

$$t_{scatter} = t_{avg} - \frac{t_{Max}}{2}$$

TOF DETERMINATION

EMISSION SPEC

Saint Gobain data sheets: https://www.crystals.saint-gobain.com/products/bc400-bc404

EMISSION SPEC

Saint Gobain data sheets: https://www.crystals.saint-gobain.com/products/bc400-bc404

DECAY TIME

Photons generated in plastic scintillator as a function of time

BC408 2.1 ns decay time from data sheets 2.14 ns obtained from fit

BC404 1.8 ns decay time from data sheets 1.77 ns obtained from fit

PUT IN BC404 VS 408 COMPARISON

Bars withFront SiPM Configuration, 1.5 cm thick, 5.5cm wide

PUT IN BC404 VS 408 COMPARISON

PARTICLE BASED LIGHT OUTPUT

Taken from Saint-Gobain plastic scintillator data sheet

DETERMINING SCATTER TIME AND POSITION

OBTAIN SCATTER TIME

Define

Want to extract $t_{scatter}$ from t'_1 and t'_2

Assume Bottom SiPM fires before Top. Assume scatter is closer to Bottom

OBTAIN SCATTER TIME

Want to extract $t_{scatter}$ from t'_1 and t'_2

Assume Bottom SiPM fires before Top. $\Delta t = t_{scatter} - t_{TransitToMiddle}$ Assume scatter is closer to Bottom $t'_1 = t_{scatter} + t_{transitMid} + \Delta t$ $t'_{2} = t_{scatter} + t_{transitMid} - \Delta t$ SiPM Top Define $t_{avg} = \frac{t_1' + t_2'}{2}$ transitMid *t*_{transitTop} Δt Therefore \star $t_{avg} = t_{scatter} + t_{transitMid}$ *t*_{transitBottom} \Rightarrow Scatter Location at time $t_{scatter}$ SiPM Bottom

OBTAIN SCATTER TIME

Want to extract $t_{scatter}$ from t'_1 and t'_2

DETERMINING SIPM COLLECTION TIME

CFD Monitor output. Cross over is the point at which time is taken at signal time

TOF DETERMINATION

Time determined to be 35.3 ns in this case. This is done for both SiPM arrays

$$t_{scatter} = t_{avg} - \frac{t_{Max}}{2}$$

TOF DETERMINATION

ENERGY SPECTRA

Scintillator in vacuum, neutrons shot at a 1cm thick, 8 cm wide detector, using a threshold of 1 optical photons detected in each SiPM

COINCIDENCE TIMING UNCERTAINTY

To make our extracted times from the CFD algorithms and the ZDS more realistic, he timing coincidence uncertainties are approximated to 600 ps fwhm. Applying a 200 ps fwhm for the ZDS we can work out the uncertainties in the CFD algorithms, depending if 1 or 2 SiPMs are involved. Then the times obtained are convoluted with a gaussian with the corresponding FWHM.

$$\delta t^2 = \delta t_{ZDS}^2 + \delta_{DAEMON}^2$$

$$600^2 = 200^2 + \delta_{DAEMON}^2$$

$$\delta_{DAEMON} = 565 ps$$

$$\delta_{DAEMON}^2 = \delta t_{CFD1}^2 + \delta t_{CFD2}^2$$

$$565^2 = (2\delta t_{CFD})^2 \qquad \delta t_{CFD} = 400 ps$$

OBTAIN Y POSITION

dbtain y position

Assume Top SiPM fires before Bottom. Assume scatter is closer to Top

$$S' = (\frac{t'_2 - t'_1}{2}) * c_{eff}$$

OBTAIN Y POSITION

Assume Top SiPM fires before Bottom. Assume scatter is closer to Top $S' = \left(\frac{t'_2 - t'_1}{2}\right) * c_{eff} \quad \text{For} \quad t'_1 < t'_2$

> If S' is negative, the t1' > t2'. Therefore S' has a negative y component

Shift to Center of Detectors YZ Planes

r

$$= \sqrt{(R^2 - X_{MidDet}^2)} + y + y + z$$

$$Y_{Scatter} = rsin(\frac{S'}{r})$$

SiPM Top

Middle

S'

POSITION RESOLUTION

Arc Length (S) Between Calculated and Actual Scatter Position Within Bars

- X is assumed to be centre of detector.
- Y is calculated via SiPM time when both fire.
- Radial distance (r) is assumed to be middle of detector.
- Z is calculated using x, y, and r.

- ★ Calculated scatter position
- $\Leftrightarrow \quad \text{Actual scatter position}$

VALIDATING GEANT4 PHYSICS PACKAGES QGSP_BERT_HP

PHYSICS VALIDATION OF GEANT4

• Hydrogen

PHYSICS VALIDATION

• Deuterium

PHYSICS VALIDATION

Carbon-12

ENDF elastic **ENDF** inelastic
PHYSICS VALIDATION

ENDF inelastic

PHYSICS VALIDATION

• Carbon-12

ENDF inelastic

PHYSICS VALIDATION

• Carbon-12: Not HP physics package

ENDF inelastic

GEANT4 SIMULATIONS PHYSICS VALIDATION

• Carbon-12: HP physics package

MEAN FREE PATH

GEANT4 SIMULATIONS MEAN FREE PATH OF NEUTRONS IN BC408

0^L

 Many of the nuclei found in the astrophysical rapid neutron capture process are beta delayed neutron emitters

Start with energy conservation

$$m_{Emitter}c^{2} + E_{Emitter} = m_{Daughter}c^{2} + E_{Daughter} + m_{n}c^{2} + T_{n} + T_{R}$$

Use

$$S_n = m_{Daughter}c^2 + m_nc^2 - m_{Emitter}c^2$$

To get:

$$E_{Emitter} = E_{Daughter} + T_n + T_R + S_n$$

- Beta delayed neutron spectroscopy
 - If the following values are measured precisely, information on excited states can be extracted, which has nuclear structure implications.

$$E_{Emitter} = E_{Daughter} + T_n + T_R + S_n$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad Neutron$$
(Excited) (Excited) Kinetic Nucleus Separation
State of State of Energy Recoil Energy
Emitter Daughter Neutron Energy

• Our goal is to measure neutron energy with good resolution!

DEUTERATED SCINTILLATORS

F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112–120 119

DEUTERATED SCINTILLATORS

Ideal for lighter nuclei close to closed shells with low level density

F.D. Becchetti et al. / Nuclear Instruments and Methods in Physics Research A 820 (2016) 112-120 119

NEUTRON DETECTION SCINTILLATORS

- Extracting neutron energies is slightly more complicated than other radiation due to their lack of charge
- Need special detectors

 like scintillators which can convert kinetic
 energy of particles into
 photons for particle
 detection

NEUTRON DETECTION SCINTILLATORS

- It is possible to determine the type of radiation incident on a scintillator
 - This can be based on the timing profile of the scintillation light emission

Knoll, G. Radiation and Detection Measurement.