

the extreme accelerators in our Universe with multi-messenger observations

Nahee Park

Cosmic Rays : Particles from Outer Space

High energy charged particles, originating in outer space

Mostly nuclei of atoms

• 85% proton, 12% helium, 2% heavy nuclei, 1% leptons at 109 eV

Spectrum follows a smooth power-law distribution over wide energy range

More than a hundred years old questions...

What is the origin of cosmic rays?

How do they get their energies?

How do they propagate to us?

Difficulties

Bending in the magnetic field

Lots of interaction in their way to Earth

Source of Galactic Cosmic Rays?

proton-proton inelastic interaction

Supernova Remnant

γ (gamma-ray)

Cosmic-rays are bending inside the magnetic field. Gamma-rays are generated by both <u>leptons & hadrons</u>! VHE neutrino are generated only by hadrons!

Cosmic Rays with energies <u>up to</u> 10¹⁵eV (1 PeV)

Inverse Compton Scattering

neutrind

Source of Extragalactic Cosmic Rays? Cosmic Rays with energies <u>higher than</u> 10¹⁷eV (100 PeV) CR nuclei

damma-ra

v(neutrino)

proton-proton inelastic interaction

2

 (\mathbf{N})

Horizon of VHE gamma-ray (>100 GeV (10¹¹ eV)) : z~1 Neutrinos do not interact and image the sky in regions from which even X-rays cannot escape →*Hard to Detect!!*

Inverse Compton Scattering

py interaction

Detection of Astro Particles

Cosmic rays

- Space based for energies up to tens of TeV/n : compact particle detectors (charge detector + calorimeter)
- Ground based air shower array for E > 1 TeV/n : detect the air shower by reconstructing secondary particles generated by inelastic interactions in the atmosphere

VHE gamma rays (E>100 GeV)

- Detecting the air shower by imaging very fast flash of Cherenkov radiations generated by secondary particles (Imaging Atmospheric Cherenkov Telescope) or by measuring the secondary particles
- Background : cosmic-ray air showers

IACT

- ◆ Cosmic ray shower : 300Hz
- ◆ Signal from Crab pulsar wind nebula:1-2 Hz

HE neutrino (E>few tens of TeV)

- by imaging very fast flash of Cherenkov radiations generated by weak interaction of neutrinos in water or ice
- Background : cosmic-ray shower induced $\mu \& \nu$
 - Atmospheric μ : 10¹¹/year, atmospheric ν :10⁵/year
 - \bigcirc cosmic ν : ~100/yr

Cosmic rays

- Large scale anisotropy detected at $E > 8 \times 10^{18}$ eV (10% level) by Pierre Auger collaboration
 - The composition at this energy is heavier than expected.
 - Studies of source population on-going

Cosmic rays

- Large scale anisotropy detected at $E > 8 \times 10^{18} \text{ eV}$ (10% level) by Pierre Auger collaboration
 - The composition at this energy is heavier than expected.
 - Studies of source population on-going

Gamma rays (>100 GeV)

220 sources detected from Galactic & extragalactic sky - combined reports from several IACTs & air shower arrays Most of sources can be explained by leptonic emission Some hadronic sources are detected, but, with a cut-off lower than 100 TeV Indirect evidence of PeV accelerator at the Galactic center (under investigation) VHE gamma-ray event horizon at $z \sim 1$ (for E>200 GeV)

Cosmic rays

- Large scale anisotropy detected at $E > 8 \times 10^{18} \text{ eV}$ (10% level) by Pierre Auger collaboration
 - The composition at this energy is heavier than expected.
 - Studies of source population on-going

Gamma rays (>100 GeV)

220 sources detected from Galactic & extragalactic sky - combined reports from several IACTs & air shower arrays Most of sources can be explained by leptonic emission Some hadronic sources are detected, but, with a cut-off lower than 100 TeV Indirect evidence of PeV accelerator at the Galactic center (under investigation) VHE gamma-ray event horizon at z~1 (for E>100 GeV)

Neutrinos (>60 TeV)

Diffuse astrophysical neutrino flux detected by IceCube collaboration No clear neutrino source has been identified

HE multi-messenger observations

Neutrino events in a direction of a flaring blazar, TXS 0506+056

observations for TXS 0506+056

Detection of GeV/TeV gamma-ray flaring of the blazar

 \bigcirc Chance of correlation by background is rejected with 3σ

- (Potentially) first direct detection of hadronic accelerator for $E > 1 \text{ PeV} (10^{15} \text{ eV})$ - Significantly increasing the total energy emitted by this object

 - Excluding pure leptonic model

 - Current models generally agree on disfavoring pure hadronic models - Setting stringent constraints on Lorentz Invariance Violation

Extremely high-energy through-going track alert of IceCube (IC170922A) triggered multi-messenger

HE multi-messenger observations

Neutrino events in a direction of a flaring blazar, TXS 0506+056

observations for TXS 0506+056

Detection of GeV/TeV gamma-ray flaring of the blazar

 \bigcirc Chance of correlation by background is rejected with 3σ

- (Potentially) first direct detection of hadronic accelerator for $E > 1 \text{ PeV} (10^{15} \text{ eV})$ - Significantly increasing the total energy emitted by this object

 - Excluding pure leptonic model

 - Current models generally agree on disfavoring pure hadronic models - Setting stringent constraints on Lorentz Invariance Violation

IceCube archival data found a hint of time depended neutrino emission in 2014 w/13 ± 5 events over 100 days (significance of 3.5σ)

No alert exited for this type of events. Follow-up observation coverage only by the sky survey instruments

IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR, VERITAS, VLA/17B-403 teams (Science 2018) / IceCube (2018)

Extremely high-energy through-going track alert of IceCube (IC170922A) triggered multi-messenger

10

HE multi-messenger observations @ my lab. in near future

Following up neutrino events with VHE gamma-ray telescope

A single high-energy neutrino event follow-up observations (e.g. IC170922A) Time depended neutrino events follow-up observation (e.g. 2014 neutrino flaring in 2014)

Study of time independent emission with VHE gamma-ray & neutrinos

Study of luminous unidentified sources w/ hard index up to > 50 TeV • VHE gamma-ray with VERITAS provide a detailed morphology of the sources Neutrino may provide constraining upper limits for the hadronic emission, if not detection

- Generally expect the extension of the leptonic emission to reduce as energy goes higher (due to radiative cooling time)

11

We need more powerful VHE neutrino telescopes

- Larger detector area
- Higher light collection efficiency
- Better angular resolution
- → Up to 10 times better sensitivity

Under ice, located at Southern hemisphere

Moving forward

Under water, located at Northern hemisphere

Summary

We are living in an exciting era!

- Closer to answer the century old questions on the origins of cosmic rays
 - Detection of large anisotropy of cosmic rays
 - Detection of >200 VHE gamma-ray (>100 GeV) sources
 - Firm detection of astrophysical neutrino flux
 - Several evidences toward the sources of HE neutrinos
- We will explore the Universe beyond today's discoveries to hunt for the extreme accelerators
- Using current instruments
 - ✦ Get more dedicated multi-messenger observations
- Building more powerful neutrino telescopes
 - ◆ Develop more sensitive optical module
 - Construct bigger neutrino telescopes

13