Prototypes of an ion trap for the Barium tagging of nEXO

Yang Lan
McGill University
nEXO: next Enriched Xenon Observatory

- Search for neutrinoless double beta decay (0νββ)
- 2νββ: $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^- + 2\bar{\nu}_e$
- 0νββ: $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^-$

- If 0νββ detected,
 - Validate neutrinos to be their own anti-particles (Majorana)
 - Lepton numbers do not conserve
 - Neutrinos’ absolute mass scale?

- Challenge: 0νββ half-life > 10^{25} yrs
 - Requires low background
 - Underground detector
 - Radiation shielding
 - Barium tagging
Barium tagging: the ultimate method for background rejection

- A potential upgrade for nEXO
- Multiple approaches
 - Stanford U: laser resonance ionization, mass spectrometry
 “An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe”
 - Colorado State U: cold probe, laser spectroscopy
 “Imaging individual Ba atoms in solid xenon for barium tagging in nEXO”
 - McGill, Carleton, TRIUMF: RF funnel, ion trap, laser spectroscopy, mass spectrometry
 “An RF-only ion-funnel for extraction from high-pressure gases”
Ion trap requirements

- Continuously capture all the extracted ions
- Cool ions and store them for laser spectroscopy identification
 - Low temperature to avoid Doppler broadening
- Found contaminant ions in offline experiments, purify ions with $m/\Delta m > 80$
- Eject ions as fine bunches to a Multi-Reflection Time-of-Flight (MR-TOF) mass spectrometer
 - Small energy spread and time spread

Needs to develop a special linear Paul trap (LPT)
Linear Paul Trap (LPT)

- **Major components**
 - Quadrupole mass filter (QMF): ion purification according to ion mass-to-charge ratio
 - Cooler: ion cooling with helium buffer gas
 - Laser spectroscopy ion trap (LSIT): barium ion identification
 - Buncher: ion ejection for the MR-TOF mass spectrometer

- **Needs different pressures**
 - QMF: $< 1 \times 10^{-5}$ mBar
 - Cooler: ~ 0.1 mBar
 - Laser spec. ion trap: $< 1 \times 10^{-3}$ mBar
 - Buncher: $< 7 \times 10^{-3}$ mBar

![Diagram of Linear Paul Trap](image)

- Ions from RF funnel
- Ions to MR-TOF

Longitudinal confinement
Final LPT design

- Pre-cooler for effective differential pumping:
 - Mechanical precision and alignment
 - QMF: <50 μm positional precision, others ~ 0.1 mm
 - Differential pumping channel
Experiments

- Experiments with prototypes at TRIUMF
 - Made prototypes of LPT
 - Developed electronics, control and DAQ systems

- Final LPT at McGill
Prototypes

- 100+ happy hours in machine shop
Quadrupole mass filter prototype QMF2.2

- Third iteration of QMF prototypes
 - ~30 hours each

- Quadrupole electrodes have positional precision around 10 \(\mu \text{m} \)
 - except one mistake of 150 \(\mu \text{m} \)
QMF2.2 results

- Ion transmission matches Mathieu stability diagram

- Measured isotopic ratio consistent with natural abundances:
 - $^{39}\text{K}/^{41}\text{K}=17.0\pm3.9$ (93%/7%=13.3)
 - $^{85}\text{Rb}/^{87}\text{Rb}=3.7\pm1.2$ (72%/28%=2.6)
QMF2.2 results: best achievable R

- Detailed measurement around tip of stability diagram
 - Mass resolving power R
 - Ion count rate
 \propto transmission efficiency
 \propto ion acceptance
- Compare with simulations
- Best achievable mass resolving power $R_{\text{max}} \approx 140$
 ✓ (>80)
 - Limited by a mechanical error
RFQ ion cooler prototype

- 3D printing for complicated geometries
 - Fast and cheap
 - Materials vacuum compatible
 - Mechanical precision of 0.1 mm is sufficient

3D printed tapered aluminum electrodes
3D printed nylon electrode holders
Aperture plate

Ions in
Ions out
Ion cooler prototype tests

- Ions cooled and trapped at potential minimum
- Ions ejected when V_{ap} switched to low

Simulation

- Validated ion cooling
- Successful ion trapping with novel electrodes

Next: Ion time of flight (ToF) measurements
Ion ToF vs. ion temperature: $\sigma_{t_{ToF}} \propto \sqrt{T_x}$

- Ion ToF measurements qualitatively validated simulations
- Ion temperature simulation for laser spec. ion trap and buncher
 - Longitudinal: T_x close to buffer gas temperature
 - Radial: T_y and T_z below 400 K when $q<0.6$
- Laser spectroscopy: no significant Doppler broadening ✓
- Buncher for MR-TOF: no significant increase in ion energy spread and time spread ✓

- LPT meets requirements. Being commissioned at McGill.
Conclusion and outlook

- **Barium tagging** helps nEXO to reach the ultimate background level

- A special **linear Paul trap** has been designed for barium tagging
 - Ion trapping properties studied and meet requirements

- Prototypes built for experimental studies
 - **QMF prototype** has $R_{\text{max}} \approx 140$, exceeding requirement ($R=80$)
 - **Validated novel cooler for ion trapping, cooling and ejection**
 - Ion ToF measurements agrees qualitatively with simulations
 - Simulated ion temperatures meet requirements for LSIT and buncher

- Final LPT set up and being commisioned at McGill
 - Will be combined with RF funnel and MR-TOF for barium tagging studies
Also thanks to the TITAN group at TRIUMF for discussions and equipment!
University of Alabama, Tuscaloosa AL, USA
M Hughes, P Nakarmi, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan

University of Bern, Switzerland — J-L Vuilleumier
University of British Columbia, Vancouver BC, Canada — G Gallina, R Krücken, Y Lan
Brookhaven National Laboratory, Upton NY, USA
A Bolotnikov, M Chiu, G Giacomini, V Radeka, E Raguzin, S Rescia, T Tsang, M Worcester

University of California, Irvine, Irvine CA, USA — M Moe
University of California, San Diego, San Diego CA, USA — K Ni, L Yang
California Institute of Technology, Pasadena CA, USA — P Vogel

Carleton University, Ottawa ON, Canada — I Badhrees, B Chana, M Elbeltagi, D Goeldi, R Gomea, T Koffas, F Rezaei-Hosseinabadi, S Viel, C Vivo-Vilches

Colorado School of Mines, Golden CO, USA — K Leach, C Natzke
Colorado State University, Fort Collins CO, USA
A Craycraft, D Fairbank, W Fairbank, A Iverson, J Todd, T Wager

Drexel University, Philadelphia PA, USA — MJ Dolinski, P Gautam, EV Hansen, M Richman
Duke University, Durham NC, USA — PS Barbeau, J Runge

Friedrich-Alexander-University Erlangen, Nuremberg, Germany
G Anton, J Höfl, T Michel, S Schmidt, M Wagenpfel, WG Wrede, T Ziegler

IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard
IHEP Beijing, People’s Republic of China
GF Cao, YV Ding, Y Fu, XS Jiang, Z Ning, XL Sun, W Wei, LJ Wen, WH Wu, W Yan, J Zhao
IME Beijing, People’s Republic of China — L Cao, Q Wang, X Wu, H Yang

ITP Moscow, Russia — V Belov, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich
University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Echevers, S Li, L Yang
Indiana University, Bloomington IN, USA — SJ Daugherty, LJ Kaufman, G Visser

Laurentian University, Sudbury ON, Canada — E Caden, B Cleveland, A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, M Walent, U Wichoski

Lawrence Livermore National Laboratory, Livermore CA, USA
JP Brodsky, M Heffner, A House, S Sangiorgio, T Stiegler

University of Massachusetts, Amherst MA, USA
J Bolster, S Feyzbakhsh, KS Kumar, A Pocar, M Tarka, S Thibado

McGill University, Montreal QC, Canada — S Al Kharusi, T Brunner, C Chambers, L Darroch, T McElroy, M Medina Peregrina, K Murray, H Rasiwala, X Shang, T Totev

University of North Carolina, Wilmington, USA — T Daniels
Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, RJ Newby

Pacific Northwest National Laboratory, Richland, WA, USA
IJ Arnquist, ML di Vacci, S Farrara, EW Hoppe, JL Orrell, GS Ortega, CT Overman, R Saldanha, R Tsang

Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, A Fucarino, K Odian, M Oriunno, A Odian, M Oriunno, A Peña Perez, PC Rowson, J Skarpaas

University of South Dakota, Vermillion SD, USA — T Blatt, A Larson, R MacLellan

Stanford University, Stanford CA, USA
JC Dalmasso, R DeVoe, G Gratta, M Jewell, BG Lenardo, G Li, S Wu

SLAC National Accelerator Laboratory, Menlo Park CA, USA
A Baur, R Conley, A Dragone, G Haller, J Hasi, U Kaufman, HM Kelly, C Kenney, B Mong, A Odian, M Oriunno, A Peña Perez, PC Rowson, J Segal, K Skarpaas

University of Virginia, Charlottesville VA, USA
A de Ste Croix, P Edalatfar, G Gallina, P Margetak, L Martin, N Massacrett, F Retière

Yale University, New Haven CT, USA — A Jamil, Z Li, DC Moore, Q Xia

Also thanks to the TITAN group at TRIUMF for discussions and equipment!
Spare slides
Neutrino physics … without neutrinos

- Neutrinos in beta decay (β)
 - Missing energy/momentum
 - “A particle that cannot be detected”

Neutrino proposed by Wolfgang Pauli in 1930
Neutrino experiments

- First detection in 1956 at a nuclear reactor (Reines and Cowan)
 - Inverse β decay: $\bar{\nu}_e + p \rightarrow n + e^+$

- Solar neutrino problem: 1960s to 2002
 - Detected solar neutrinos only 1/3 of expectation
 - Caused by neutrino oscillation

\[
\begin{bmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{bmatrix} =
\begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{bmatrix}
\begin{bmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{bmatrix}
\]
Mass scale of neutrinos

- Non-zero mass confirmed by neutrino oscillation experiments
- Absolute mass scale to be measured

Slide courtesy of G. Gratta
Neutrino mass

- Absolute mass scale measurement
 - Direct approach: Beta decay spectrum end point

Figure credit: KATRIN collaboration (2001)
Neutrino mass

- Beta decay spectrum end point
 - Mainz and Troitsk: $m_{\nu_e} \leq 2.2$ eV
 - Next generation experiment: KATRIN
 - Aiming at 0.2 eV
 - 2019 result: $m_{\nu_e} \leq 1.1$ eV

- Neutrinoless double beta decay
 - Sensitive to neutrino mass below 0.01 eV

Science 356 (2017) 6345
Double beta decay (\(\beta\beta\))

- \(\beta\beta\) is a second order process
- Detectable if first order \(\beta\) decay is energetically forbidden

<table>
<thead>
<tr>
<th>Candidate</th>
<th>(Q) (MeV)</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{48})Ca→(^{48})Ti</td>
<td>4.271</td>
<td>0.187</td>
</tr>
<tr>
<td>(^{76})Ge→(^{76})Se</td>
<td>2.040</td>
<td>7.8</td>
</tr>
<tr>
<td>(^{82})Se→(^{82})Kr</td>
<td>2.995</td>
<td>9.2</td>
</tr>
<tr>
<td>(^{96})Zr→(^{96})Mo</td>
<td>3.350</td>
<td>2.8</td>
</tr>
<tr>
<td>(^{100})Mo→(^{100})Ru</td>
<td>3.034</td>
<td>9.6</td>
</tr>
<tr>
<td>(^{110})Pd→(^{110})Cd</td>
<td>2.013</td>
<td>11.8</td>
</tr>
<tr>
<td>(^{116})Cd→(^{116})Sn</td>
<td>2.802</td>
<td>7.5</td>
</tr>
<tr>
<td>(^{124})Sn→(^{124})Te</td>
<td>2.228</td>
<td>5.64</td>
</tr>
<tr>
<td>(^{130})Te→(^{130})Xe</td>
<td>2.533</td>
<td>34.5</td>
</tr>
<tr>
<td>(^{136})Xe→(^{136})Ba</td>
<td>2.479</td>
<td>8.9</td>
</tr>
<tr>
<td>(^{150})Nd→(^{150})Sm</td>
<td>3.367</td>
<td>5.6</td>
</tr>
</tbody>
</table>
EXO-200

- Located at Waste Isolation Pilot Plant (WIPP), New Mexico
- 655 m underground (1600 m.w.e)
- 175 kg of liquid xenon in a Time Projection Chamber (TPC) cooled to 167 K
EXO-200 TPC

- Measurement of both ionization and scintillation
- Reconstruct events 3D locations
 - Distinguish true $\beta\beta$ decay from backgrounds
 - Locate daughter isotope 136Ba for tagging (future plan)
EXO-200 energy resolution

- Combining ionization and scintillation to enhance energy resolution
 - Energy resolution $\sim 1.25\%$ at Q value in rotated axis

![Energy spectra graph with data points and lines indicating energy resolution comparison between calibration sources and rotated energy.](attachment:energy_spectra.png)
EXO-200 phase-II data

- Phase-II data taking: May 2016 to December 2018
- Underground shift: December 2017
- Data quality analyzer: from Jan 2017 to Dec 2018
 - Ensured EXO-200 operation and data taking

2019 result from complete dataset: $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25} \text{ yr}$
EXO-200 results and backgrounds

- EXO-200 experiment:
 - 200 kg of liquid xenon
 - Data: phase I: 2011 to 2014, phase II: 2016 to 2018
 - Weekly data quality analysis: Jan 2017 to Dec 2018

- No evidence for $0\nu\beta\beta$
- $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25}$ yr
 - One of the best results

- nEXO: 5 tonnes xenon
- Lowest background level
 - Barium tagging

\[^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^- + 2\bar{\nu}_e \]
\[^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^- \]

Physical review letters, 123(16):161802, 2019
EXO-200 → nEXO

- Enriched xenon 200 kg → 5000 kg
- Underground: 655 m → 2070 m
- Improved energy resolution
- Barium tagging

\[2\nu\beta: \ {^{136}Xe} \rightarrow {^{136}Ba}^{++} + 2e^- + 2\bar{\nu}_e \]

\[0\nu\beta: \ {^{136}Xe} \rightarrow {^{136}Ba}^{++} + 2e^- \]
nEXO sensitivity with barium tagging

- $0\nu\beta\beta$ vs. neutrino mass

$$\frac{1}{T^{0\nu\beta\beta}_{1/2}} = G_F M^2 \langle m_{\beta\beta} \rangle^2 \approx 10^{28} \left(\frac{0.01 \text{ eV}}{\langle m_{\beta\beta} \rangle} \right)^2$$

$$\langle m_{\beta\beta} \rangle = \sum_{i=1}^{3} m_i U_{ei}^2$$
Electric potential in a LPT

- Spatial harmonics: \(\phi(r, \theta) = \sum_{n=0}^{\infty} A_n \phi_n \)

\[
\phi_0 = A_0
\]

\[
\phi_2 = A_2 \frac{y^2 - z^2}{r_0}
\]

\[
\phi_6 = A_6 \frac{x^6 - 15x^4y^2 + 15x^2y^4 - y^6}{r_0^6}
\]

\[
\phi_{10} = A_{10} \frac{x^{10} - 45x^8y^2 + 210x^6y^4 - 210x^4y^6 + 45x^2y^8 - 7^{10}}{r_0^{10}}
\]
LPT: ion confinement in radial directions

- Radio frequency quadrupole (RFQ) for ion confinement

Ion’s equation of motion:

\[\frac{d^2 y}{dt^2} = \frac{-2ey}{r_0^2} (U - V \cos \Omega t) \]
\[\frac{d^2 z}{dt^2} = \frac{2ez}{r_0^2} (U - V \cos \Omega t) \]

Mathieu equation:

\[\frac{d^2 u}{d\xi^2} + (a - 2q \cos 2\xi) u = 0 \]

Mathieu parameters:

\[a \propto U, \quad q \propto V \]

\[\beta \approx \sqrt{(a + \frac{1}{2}q^2)} \quad (\beta \ll 4) \]

Micromotion: \(\Omega \)

Macromotion: \(\omega = \beta \Omega / 2 \)

Figure credit: Molhave (2000)
Mathieu equation: analytical solution from first principles

\[u(\xi) = A \sum_{n=-\infty}^{\infty} C_{2n} \cos[(\beta + 2n)\xi] + B \sum_{n=-\infty}^{\infty} C_{2n} \sin[(\beta + 2n)\xi], \quad \xi = \frac{\Omega t}{2} \]

- Stable solution & ion confinement: \(\beta \) is a real and non-integer number

\[\beta = \sqrt{a - \frac{q^2}{a-(\beta-2)^2} - \frac{q^2}{a-(\beta+4)^2} - \cdots} \]

- \(\beta \): no analytical solution
 - Only approximations in literature

- New approach: iterative method
 - \(\beta_0 = 1 + 0j, \; \beta_{n+1} = \beta(a, q, \beta_n) \)
 - \(n = 1000 \), convergence \(< 10^{-15} \)
 - Analytical solution of \(\beta \) for any \((q, a)\)

- First detailed Mathieu stability diagram
 - Exact analytical solution of beta
 - Analytical solution for ion motion
Ion motion and ion acceptance ellipses ϵ

- **Analytical solution of Mathieu equation**
- Ion acceptance ϵ: area of ellipses in phase space
- **Analytical solution of acceptance for any (q,a)**
- Maximum ion transmission: $a=0$, $q \approx 0.6$
Phase-independent ion acceptance ϵ_{PI}

- To capture all extracted ions
 - Accept ions at any RF phase
 - ϵ_{PI}: overlapped ion acceptance

LPT design parameters:
- $q=0.45$, $r_0=3.51$ mm, $f=1$ MHz, $V_{RF}=77$ V:
 - $\epsilon_{PI}=2.44$ mm·mm/μs,
 - can captures $\geq 99\%$ of extracted ions
- 2D Gaussian distributed
- $\epsilon_{PI} \approx \epsilon_{4rms}$
- Meets requirement
Ion acceptance of quadrupole mass filter (QMF)

- Ion acceptance ϵ analytically calculated for any (q,a)
- For validating simulations and experiments
 - Mass resolving power $R (m/\Delta m)$
 - Ion transmission rate T

When ions are abundant and uniformly distributed, ion transmission rate T is proportional to ϵ: $T \propto \epsilon$
Novel electrode geometry for ion cooler

- **Classical design**
 - Segmented quadrupole electrodes to form potential gradient

- **Novel design**
 - Tapered electrodes
 - Varying electric field penetration to form potential gradient
 - Simplified electrical connections
A realistic LPT: electrode geometries

- Hyperbolic shape is ideal but mechanically difficult

- Round electrodes are easier to machine and assemble
 - Studied electric potential
 - Purity of quadrupole potential
 - Effects on ion transmission
 - Optimum parameter: $r_e/r_o=1.13$
Truncated hyperbolic electrodes

- Ideal quadrupole potential when truncated at $> 1.8r_0$
Round electrodes

- “Magic ratio” $r_e/r_0 = 1.14511$ for $A_6 = 0$
- However, not best for ion transmission
Novel electrodes for cooler

- Tapered quadrupole to also provide DC potential gradient
- Varying electric field penetration
LPT conceptual design

- Ensure mechanical precision and alignment
 - QMF needs $<50 \ \mu m$ positional precision, others $\sim 0.1 \ mm$

- Effective differential pumping:
 - Apertures and long channels
QMF design
Pre-cooler design
Ion cooler design
Laser spectroscopy ion trap design
Ion buncher design

Pulse drift tube

(a)

(b)
Vacuum design

- Different pressure requirements
- Differential pumping through apertures and channels
Vacuum simulation

- Tool: Molflow+ (https://molflow.web.cern.ch)
 - Molecular flow simulation using ray-tracing
 - Simplified geometry
Vacuum simulation

- Tool: Molflow+ (https://molflow.web.cern.ch)
- Molecular flow simulation using ray-tracing

Avoid gas buildup

- Pump

Helium gas in

5 cm

1×10^{-5} mbar

6×10^{-4} mbar

5×10^{-4} mbar

6×10^{-2} mbar
QMF stability diagram
QMS mass scan

- Voltage scan vs. Frequency scan
Quadrupole electrode simulations for QMF

$r_e/r_0 = 1.145$

Simulation $v_x = 2 \text{mm/\mu s}$
Simulation $v_x = 5 \text{mm/\mu s}$

Acceptance α_{coll} [\text{rad}^2/	ext{cm}]

$r_e/r_0 = 1.13$

Simulation $v_x = 2 \text{mm/\mu s}$
Simulation $v_x = 5 \text{mm/\mu s}$

Acceptance α_{coll} [\text{rad}^2/	ext{cm}]
QMF2.2 results: best achievable R

- A problem in assembly:
 - Performance of QMF2.2 limited by the mechanical problem
 - Best achievable mass resolving power $R_{\text{max}} \approx 140 \checkmark (>80)$
RFQ ion guide acceptance simulation

- $r_e/r_0=1.13$ is optimum
Ion emittance from RF funnel

- $\epsilon_{3\text{rms}} = 1.44 \text{ mm}\cdot\text{mm}/\mu\text{s}$
Experimental preparation

- Electronics, control and DAQ systems
- Vacuum
- Ion source
- Ion detector
Quadrupole Mass Filter (QMF) prototypes

- Acrylic QMF (V1.0)
 - Novel design
 - Mechanical tolerance ~ 0.2 mm
 - Tested as an ion guide
 - Saw optimum ion transmission at 20 Vpp, 530 kHz
 - Things are working: electronics, DAQ, ion source, ion detector …

0.02 mm (20 μm) tolerance needed
Mechanical tolerance $\sim 50 \mu m$ (0.002"")

RF amplitude: 20 Vp-p, frequency 0.3 to 0.9 MHz

Figure credit: Niessen (2017)
RF cooler prototype

- More complicated geometries
- Less tolerance requirement: 0.3 mm
- Try 3D printing for rapid prototyping
 - Tolerance ~ 0.1 mm ✓

- Tested vacuum compatibility
 - Below 10^{-6} Torr within 10 hours of pumping ✓

- Ongoing experiment with ion cooler:
 - Ion trapping and ion ejection
QMS performance simulation

- Transmission efficiency
 - acceptance
- Mass resolving power
- Validate mechanical tolerance
Measure QMS electrode tolerance

- Use the digital readout on a lathe
Novel rectangular electrode for cooler

Width: 4 mm

Width: 2 mm
Laser spectroscopy

- Initial study at Stanford (~2005)
- now at Carleton University