

THE UNIVERSITY OF BRITISH COLUMBIA

Ab initio 0vββ nuclear matrix elements

Antoine Belley WNPPC 2021

CINP Solution ICPN NSERC CRSNG

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

 $2v\beta\beta vs 0v\beta\beta$

2

Decay	2 uetaeta	0 uetaeta
Diagram	$n \longrightarrow p$ $W \qquad \overline{\nu}$ $\overline{\nu}$ $W \qquad \overline{\nu}$ $R \longrightarrow p$	$n \longrightarrow p \\ W & e \\ V_M \\ W & e \\ n \longrightarrow p \\ p$
Half-life	$[T^{2 u}]^{-1} = C^{2 u} M^{2 u}^{2}$	$\left[\begin{array}{c} 1 \\ (m_{ee}) \end{array} \right]^2$
Formula	$[I_{1/2}] = G [M]$	$\left[[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} M^{0\nu} ^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e} \right) \right]$
*NME	$M^{2\nu} \sim M^{2\nu}$	$\Lambda I 0 \nu = \Lambda I 0 \nu \qquad (g_v) 2 \Lambda I 0 \nu + \Lambda I 0 \nu$
Formula	$\sim IVI \sim IVI GT$	$\begin{bmatrix} MI & -MI_{GT} - \left(\frac{g}{g_a}\right) & MF + MT \end{bmatrix}$
**LNV	No	Yes!!!
Observed	Yes (extremely rare)	No

*NME : Nuclear matrix elements

**LNV : Lepton number violation

Status of 0vββ-decay Matrix Elements

3

Current calculations from phenomenological models have large spread in results.

All models missing essential physics Impossible to assign rigorous uncertainties

Nuclear matrix elements

$$NME = \sum_{n} \sum_{m} \langle n \, | \, \hat{O} \, | \, m \rangle$$

 $|n\rangle$ are the eigenstates of the nuclear hamiltonian involved in the transition. \hat{O} is the operator we wish to find the NME of.

Nuclear matrix elements

$$NME = \sum_{n} \sum_{m} \langle n \, | \, \hat{O} \, | \, m \rangle$$

 $|n\rangle$ are the eigenstates of the nuclear hamiltonian involved in the transition. \hat{O} is the operator we wish to find the NME of.

\Rightarrow We need the nuclei wave functions!

VS-IMSRG

6

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

VS-IMSRG

7

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerate

VS-IMSRG

8

Valence-Space In Medium Similarity Renormalization Group

Discovery, accelerated

CRIUMF Benchmarking 0vββ Decay in Light Nuclei: Summary

9

Benchmark with other ab initio method for fictitious decays in light nuclei

Reasonable to good agreement in all cases

Ab Initio $0v\beta\beta$ Decay: ⁴⁸Ca, ⁷⁶Ge and ⁸²Se

Well converged results both in e_{max} and E_{3max} for the "magic" interaction (EM1.8/2.0)

∂ TRIUMF

Ab Initio 0vββ Decay: 48Ca, 76Ge and 82Se

11

Results with 5 different input hamiltonians to study uncertainty from interaction choice.

RIUMF

Ab Initio 0vββ Decay: ¹³⁰Te, ¹³⁶Xe

¹³⁰Te, ¹³⁶Xe major players in global searches with SNO+ and nEXO

Increased E_{3max} capabilities allow first converged ab initio calculations [EM1.8/2.0, Δ_{GO}]

∂ TRIUMF

Summary...

- 1)Computed first ever ab-initio NMEs of isotopes of experimental interest, which is a first step towards computing NME with reliable theoretical uncertainties.
- 2) Method has been benchmarked with exact methods in fictitious light decays.
- 3) Computed NME with multiple interactions for ⁴⁸Ca, ⁷⁶Ge and ⁸²Se.
- 4) Computed preliminary results for ¹³⁰Te and ¹³⁶Xe.

... and outlook

- 1)Finish calculations with different interactions for ¹³⁰Te and ¹³⁶Xe
- 2) Analysis of undetermined leading order contact (and finite momentum 2bc)
- 3) Correlations with other operators: eg, double Gamow-Teller
- 4) Large scale ab initio uncertainty analysis with other methods for 'final' NMEs
- 5) Study other exotic mechanism proposed for $0 \lor \beta \beta$.

Discovery, accelerated

∂ TRIUMF

Questions?

0vββ operators

$$O_{GT} = \frac{2R}{\pi} \int_{0}^{\infty} \frac{q^{*} j_{o}(qr)^{*} h_{GT}(q)}{E_{c} + q} (\sigma_{1} \cdot \sigma_{2}) \tau_{1}^{+} \tau_{2}^{+}$$

$$O_{F} = \frac{2R}{\pi} \int_{0}^{\infty} \frac{q^{*} j_{o}(qr)^{*} h_{F}(q)}{E_{c} + q} \tau_{1}^{+} \tau_{2}^{+}$$

$$O_{T} = \frac{2R}{\pi} \int_{0}^{\infty} \frac{q^{*} j_{2}(qr)^{*} h_{T}(q)}{E_{c} + q} (3(\sigma_{1} \cdot \hat{r})(\sigma_{2} \cdot \hat{r}) - (\sigma_{1} \cdot \sigma_{2})) \tau_{1}^{+} \tau_{2}^{+}$$

where the functions h are the neutrino potentials respective to each decay mode and E_C is the closure energy.

Ab Initio 2vββ Decay: ⁴⁸Ca

16

VS-IMSRG: decrease in final matrix element

Belley, Payne, Stroberg, JDH, in prep

Potential issues: limited 1⁺ states, missing IMSRG(3),... Benchmarks with CC underway!