Ab initio $0\nu\beta\beta$ nuclear matrix elements

Antoine Belley

WNPPC 2021
<table>
<thead>
<tr>
<th>Decay</th>
<th>$2\nu\beta\beta$</th>
<th>$0\nu\beta\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half-life Formula</td>
<td>$[T_{1/2}^{2\nu}]^{-1} = G^{2\nu}</td>
<td>M^{2\nu}</td>
</tr>
<tr>
<td>NME Formula</td>
<td>$M^{2\nu} \approx M_{GT}^{2\nu}$</td>
<td>$M^{0\nu} = M_{GT}^{0\nu} - \left(\frac{g_\nu}{g_\alpha}\right)^2 M_{F}^{0\nu} + M_{T}^{0\nu}$</td>
</tr>
<tr>
<td>LNV</td>
<td>No</td>
<td>Yes!!!</td>
</tr>
<tr>
<td>Observed</td>
<td>Yes (extremely rare)</td>
<td>No</td>
</tr>
</tbody>
</table>

*NME : Nuclear matrix elements
**LNV : Lepton number violation*
Current calculations from phenomenological models have large spread in results.

All models missing essential physics
Impossible to assign rigorous uncertainties
Nuclear matrix elements

\[NME = \sum_n \sum_m \langle n | \hat{O} | m \rangle \]

\(| n \rangle \) are the eigenstates of the nuclear hamiltonian involved in the transition.
\(\hat{O} \) is the operator we wish to find the NME of.
Nuclear matrix elements

\[NME = \sum_n \sum_m \langle n | \hat{O} | m \rangle \]

\(| n \rangle \) are the eigenstates of the nuclear hamiltonian involved in the transition.
\(\hat{O} \) is the operator we wish to find the NME of.

⇒ We need the nuclei wave functions!
Valence-Space In Medium Similarity Renormalization Group

Valence-Space In Medium Similarity Renormalization Group

Courtesy, S. R. Stroberg

VS-IMSRG

Discovery, accelerated
Truncations

- \(e_{\text{max}} \): Truncations for 1-body states. Is given by \(2n + 1 \)
- \(E_{3\text{max}} \): Truncations for 3-body forces. Optimally \(E_{3\text{max}} = 3 \times e_{\text{max}} \)
- IMSRG(2): All operators are truncated to the 2-body level

Parameters

- Input hamiltonian
- Harmonic oscillator frequency for hamiltonian basis (\(\hbar \omega \))
- Reference state
Benchmark with other ab initio method for fictitious decays in light nuclei.

Reasonable to good agreement in all cases.

Yao, Belley, et al., PhysRevC.103.014315
Ab Initio $0\nu\beta\beta$ Decay: ^{48}Ca, ^{76}Ge and ^{82}Se

Well converged results both in e_{max} and $E_{3\text{max}}$ for the “magic” interaction (EM1.8/2.0)

Belley et al., PhysRevLett.126.042502
Results with 5 different input hamiltonians to study uncertainty from interaction choice.

Things to add: valence space variation, two-body currents, IMSRG(3), …
Ab Initio $0\nu\beta\beta$ Decay: ^{130}Te, ^{136}Xe

^{130}Te, ^{136}Xe major players in global searches with SNO+ and nEXO

Increased $E_{3\text{max}}$ capabilities allow first converged ab initio calculations [EM1.8/2.0, ΔG_O]

Belley et al., in prep
Summary...

1) Computed first ever ab-initio NMEs of isotopes of experimental interest, which is a first step towards computing NME with reliable theoretical uncertainties.

2) Method has been benchmarked with exact methods in fictitious light decays.

3) Computed NME with multiple interactions for 48Ca, 76Ge and 82Se.

4) Computed preliminary results for 130Te and 136Xe.

... and outlook

1) Finish calculations with different interactions for 130Te and 136Xe

2) Analysis of undetermined leading order contact (and finite momentum 2bc)

3) Correlations with other operators: eg, double Gamow-Teller

4) Large scale ab initio uncertainty analysis with other methods for ‘final’ NMEs

5) Study other exotic mechanism proposed for $0\nu\beta\beta$.
Questions?
where the functions h are the neutrino potentials respective to each decay mode and E_C is the closure energy.
Ab Initio $2\nu\beta\beta$ Decay: 48Ca

VS-IMSRG 1.8/2.0 (EM)

VS-IMSRG: decrease in final matrix element

Potential issues: limited 1^+ states, missing IMSRG(3),... Benchmarks with CC underway!

Belley, Payne, Stroberg, JDH, in prep