Precision branching-ratio measurement for the superallowed Fermi β emitter ¹⁸Ne

Kushal Kapoor

University of Regina

Kushal.Kapoor@uregina.ca

February 10, 2021

Kushal Kapoor

University of Regina

Overview

• Introduction

I.Nuclear β decay II.Why ¹⁸Ne?

- Experimental Setup
 - I. GANIL Lab
 - II. Detector system
- Results
- Future plan

Kushal Kapoor

Introduction	Experimental Setup	Results
• • • •	0 0 0 0 0	0 0 0 0

Nuclear β decay

• Nuclear $\boldsymbol{\beta}$ decay occurs when an unstable nucleus of an atom, with atomic number (Z) and neutron number (N), transforms into a more stable nucleus, with $Z \pm 1$ and $N \pm 1$

Introduction	Experimental Setup	Results
• • • •	0 0 0 0	0 0 0 0

Nuclear β decay

• Nuclear $\boldsymbol{\beta}$ decay occurs when an unstable nucleus of an atom, with atomic number (Z) and neutron number (N), transforms into a more stable nucleus, with $Z \pm 1$ and $N \pm 1$

$$\beta^+ \text{ decay} : \begin{array}{l} {}^{A}_{Z}X_N \end{array} \rightarrow {}^{A}_{Z-1}Y_{N+1} + e^+ + \nu_e,$$

$$\beta^- \text{ decay} : \begin{array}{l} {}^{A}_{Z}X_N \end{array} \rightarrow {}^{A}_{Z+1}W_{N-1} + e^- + \overline{\nu_e},$$

- $\boldsymbol{\beta}$ decays can be characterized by:
 - *Q* value (energy released)
 - Half life $T_{_{1/2}}$ (parent nucleus)
 - Branching ratio (BR) (to a particular state of interest in the daughter)

Precision branching-ratio measurement for the superallowed Fermi β emitter ¹⁸Ne

Kushal Kapoor

Introduction	Experimental Setup	Results
• • • •	0 0 0 0	0 0 0 0

Nuclear β decay

• Nuclear $\boldsymbol{\beta}$ decay occurs when an unstable nucleus of an atom, with atomic number (Z) and neutron number (N), transforms into a more stable nucleus, with $Z \pm 1$ and $N \pm 1$

$$\beta^+ \text{ decay} : {}^{A}_{Z}X_N \to {}^{A}_{Z-1}Y_{N+1} + e^+ + \nu_e,$$

$$\beta^- \text{ decay} : {}^{A}_{Z}X_N \to {}^{A}_{Z+1}W_{N-1} + e^- + \overline{\nu_e},$$

- $\boldsymbol{\beta}$ decays can be characterized by:
 - *Q* value (energy released)
 - Half life $T_{_{1/2}}$ (parent nucleus)
 - Branching ratio (BR) (to a particular state of interest in the daughter)

$$BR \simeq rac{N_{\gamma(x)}}{N_{eta_{ ext{Tot}}}}$$

Kushal Kapoor

Introduction	Experimental Setup	Results
0 • 0 0	0 0 0 0 0	0 0 0 0

Nuclear β decay – selection rules

Angular momentum (L): **Allowed decays (L=0),** Forbidden decays (L=1,2,3,...)

Spin angular momentum $(S) = S_{\beta} + S_{v:}$ **Fermi decays (S=0),** Gamow-Teller decays (S=1)

Isobaric Analogue State (IAS)

Kushal Kapoor

Introduction	Experimental Setup	Results
0 • 0 0	0 0 0 0	0 0 0 0

Nuclear β decay – selection rules

Angular momentum (L):

Allowed decays (L=0), Forbidden decays (L=1,2,3,...)

Spin angular momentum $(S) = S_{\beta} + S_{v:}$ **Fermi decays (S=0),** Gamow-Teller decays (S=1)

Total Isospin (T), projection (tz = +1/2 (Neutron), -1/2(Proton))

Super ($\delta T=0$, transition to IAS)

Super ($\boldsymbol{\delta} T=0$, IAS) Allowed (L=0) Fermi (S=0) decays,

University of Regina

Kushal Kapoor

Introduction	Experimental Setup	Results
0 • 0 0	0 0 0 0	0 0 0 0
	Cı 1	

Nuclear β decay – ft values

Super ($\boldsymbol{\delta}T=0$, IAS) Allowed (L=0) Fermi(S=0) decays,

All nuclear $\boldsymbol{\beta}$ decays to any daughter state can be • characterized in terms of a single quantity known as the ftvalue

Parent

 (J^{Π},T,T_z)

Half-life

Kushal Kapoor

Introduction	Experimental Setup	Results
0 • 0 0	0 0 0 0	0 0 0 0
	Cı 1	

Nuclear β decay – ft values

Super ($\boldsymbol{\delta}T=0$, IAS) Allowed (L=0) Fermi(S=0) decays,

All nuclear $\boldsymbol{\beta}$ decays to any daughter state can be • characterized in terms of a single quantity known as the ftvalue

Parent

 (J^{Π},T,T_z)

Half-life

Kushal Kapoor

Introduction	Experimental Setup	Results
000 •	0 0 0 0	0 0 0 0
Why ${}^{18}Ne?$		

Matrix Elements
$$\longrightarrow |M_{fi}|^2 = 2(1 - \delta_c)$$

$$\mathcal{F}t \equiv ft(1+\delta_{\rm R}')(1+\delta_{\rm NS}-\delta_{\rm C}) = \frac{K}{2G_{\rm V}^2(1+\Delta_{\rm R}^{\rm V})},$$

- Δ_{R}^{V} nucleus independent- radiative correction, δ'_{R} radiative ٠ correction -transition-dependent (Z-dependent), $\boldsymbol{\delta}_{_{C}}$ – isospin symmetry breaking correction and $\boldsymbol{\delta}_{_{N\!S}}$ -nuclear-structure-dependent part of radiative correction
- In the recent years, our group has been investigating low Z superallowed emitters (${}^{10}C, {}^{14}O, {}^{18}Ne$)
- ft value for ¹⁸Ne is 2912 ± 79 (s)
- ^{18}Ne is not on the plot because of the large uncertainty in the BR for this decay.
- ^{18}Ne ft-value is also one of the most interesting cases • to better constrain isospin symmetry breaking

Kushal Kapoor

^{*}Hardy et. al., Nucl. Phys. A 246, 61 (1975)

Introduction	Experimental Setup	Results
0000	0 0 0 0 0	0 0 0 0

Why $^{18}Ne?$

- Uncertainties dominated by BR
- Hardy et. al., ¹⁸Ne Branching Ratio = $7.66 (0.27)\%^*$.
- Only one previous measurement, so our goal is to reduce the uncertainties in the BR of ¹⁸Ne.

Kushal Kapoor

University of Regina

ntroduction	Experimental Setup	Results
0 0 0 0	• • • • •	0 0 0 0

Experimental Setup - GANIL facility in Caen, France

Cyclotron building

Kushal Kapoor

(2014) 18-25

741

Grinyer et. al., Nucl.Instrum.Meth.A

Introduction	Experimental Setup	Results
0 0 0 0	0000	0 0 0 0

- Beams of radioactive isotopes enter the collection chamber from the right and are implanted into an aluminized-mylar tape
- The beam is then interrupted and the samples are moved to the decay counting chamber (bottom)

- Absolute HPGe efficiency calibration
 - Detailed source work
 - X-ray imaging

Kushal Kapoor

- Source scanning table
- Detailed simulations
- 10 yrs of calibration!

* CENBG

University of Regina

Bordeaux Group

Introduction	Experimental Setup	Results
0000	0 0 • 0 0	0 0 0 0

- A total of 23 different radioactive sources were used.
- Some of them are only available as a radioactive beam.
- Efficiency = 0.231 (4)% at 1042 keV.

Kushal Kapoor

ENBG

Collection chamber

University of Regina

Bordeaux Group

Introduction	Experimental Setup	Results
0000	0000	0 0 0 0

Kushal Kapoor

University of Regina

Introduction	Experimental Setup	Results
0000	0 0 0 0	• • • •

Results

Kushal Kapoor

University of Regina

Introduction	Experimental Setup	Results
0 0 0 0	0 0 0 0	0 • 0 0

Results

Introduction	Experimental Setup	Results
0000	0 0 0 0 0	0 0 ● 0

Results

Preliminary results for Branching Ratio = 7.52 $(\pm 0.043)\%$

This is in excellent agreement and ~5 times more precise than the previous reported value: $7.66 \ (\pm 0.21)\%$

Kushal Kapoor

University of Regina

Introduction E	Experimental Setup	Results
, , , , , , , , , , , , , , , , , , , ,	0 0 0 0	000

Summary & Future Plan

Preliminary results for Branching Ratio = 7.52 $(\pm 0.043)\%$

This is in excellent agreement and ~5 times more precise than the previous reported value: $7.66 \ (\pm 0.21)\%$

- We deduced the branching ratio of ${}^{18}Ne$ from an experiment performed at GANIL.
- Obtained the value 7.52 $(\pm 0.043)\%$, which is 5x more precise than the only previous measurments.
- Results are preliminary, a detailed evaluation of systematic uncertainties is required.
- In future, we plan on revisiting the simulations of the detector efficiency. Since the branching ratio measurment is dominated by the uncertainities in the efficiency, any improvement we can make will directly decrease the uncertainty in the final result.

Kushal Kapoor

G.F. Grinyer A.T.Laffoley J.C.Thomas **B.Blank** H.Bouzomita R.A.E.Austin G.C.Ball **F.Bucaille P.Delahaye P.Finlay** G.Fremont J.Gibelin J.Giovinazzo T.Kurtukian-Nieto K.G.Leach A.Lefevre **F.Legruel** G.Lescalie **D.Perez-Loureiro**

*** TRIUMF**

JNIVERSITY &GUELPH

ENBG

THANK YOU

Kushal Kapoor

University of Regina

Kushal Kapoor

University of Regina

Kushal Kapoor

University of Regina

Introduction	Experimental Setup	Results
0000	0 0 0 • 0	0 0 0 0

- Detector calibration table
 - Precise positioning of the source
 - Laser calibrated x,y positioning

Kushal Kapoor

Precision branching-ratio measurement for the superallowed Fermi β emitter ¹⁸Ne

University of Regina