Bound-State β^- -decay of Thallium-205

Guy Leckenby

Graduate Research Assistant Nuclear Physics Department, TRIUMF Supervisor: Iris Dillmann

Outline

- What is bound-state β^- -decay?
- Why Thallium-205? The Lorandite experiment!
- How to measure bound-state β^- -decay?
 - Storage rings
 - 1. Electron stripping measurement
 - 2. Decay measurement

Thallium-205 Decay Scheme

- Neutral ²⁰⁵Tl⁰⁺ is stable
 - Neutral ²⁰⁵Pb⁰⁺ decays by EC
- Bare ²⁰⁵Tl⁸¹⁺ ions are unstable

LOREX (LORandite EXperiment)

 $^{205}Tl^{0+} + \nu_e(E \ge 53 \ keV) \rightarrow ^{205}Pb^{0+,*}(2.3 \ keV) + e^{-}$

How to measure β_b^- -decay

Decay counting electron cooler High charge state = highly reactive dipole 0 magnet Storage rings ESR @ ESR Circ: hold ions for 108.4 m several hours GSI Helmholtzzentrum für Schwerionenforschung resonant quadrupole Schottky Schottky magnet pickup pickup i#**__**____ gas target

J Grumer, et. al. Phys. Rev. A 88, (2013) 022513

Measuring β_b^- -decay

$$\bigcirc \quad \frac{N_{Pb}(t_s)}{N_{Tl}(t_s)} = \frac{N_{Pb}^+(t_s)}{N_{Tl}(t_s)} \cdot \frac{\sigma_+ + \sigma_-}{\sigma_+} = \frac{\lambda_{\beta_b}}{\gamma} t_s \cdot \left[1 + \frac{1}{2} (\lambda_{Pb}^{CC} - \lambda_{Tl}^{CC}) t_s + \cdots\right]$$

Two parts to the measurement:

- Part 1: charge-changing cross section ratio measurement with primary beam.
- Part 2: measure ionised lead to thallium ratio for different storage times.

Part 1: Cross Sections

- H-like ²⁰⁶Pb⁸¹⁺ primary beam in ESR.
- CsISiPHOS captures **bare** ²⁰⁶Pb⁸²⁺.
- MWPC captures **He-like**²⁰⁶Pb⁸⁰⁺.
- Counting ions gives the ratio.

$$\frac{\sigma_{+} + \sigma_{-}}{\sigma_{+}} = \frac{N(2^{06}Pb^{82+}) + N(2^{06}Pb^{80+})}{N(2^{06}Pb^{82+})}$$
CSISiPHOS
WPC
CSISiPHOS
Dipole Magnet
$$\frac{2^{06}Pb^{82+}}{Dipole Magnet}$$

Cross Section Data

1. Stacking ¦ 3. Stripping ¦ 4. Measurement 2. Storage beam intensity

Part 2: Decay Storage

Step 1: Stacking ²⁰⁵Tl⁸¹⁺ beam at the inside orbit of ESR.

Animations courtesy of Rui Jiu Chen (https://www.researchgate.net/profile/Ruijiu_Chen).

Animations courtesy of Rui Jiu Chen (https://www.researchgate.net/profile/Ruijiu_Chen).

Animations courtesy of Rui Jiu Chen (https://www.researchgate.net/profile/Ruijiu_Chen).

Schottky Results

Results from ²⁰⁵Tl⁸¹⁺

Results from ¹⁶³Dy⁶⁶⁺

○ ¹⁶³Dy⁰⁺ is stable.

$$\bigcirc t_{1/2}({}^{163}Dy^{66+}) = 47^{+5}_{-4} d.$$

M Jung, et. al. PRL. 69:15. (1992) 2164.

Recap:

 $\bigcirc \beta_b^-$ -decay is transformative.

○ Need β_b^- -decay rate for LOREX.

Only storage rings hold bare ions long enough.

Thank you to my collaborators!

Analysis: Yu.A. Litvinov¹, R. Gernhaeuser², I. Dillmann³, J. Glorius¹, R.S. Sidhu¹, R.J. Chen¹, C. Griffin³.

1. Gesellschaft für Schwerionenforschung (GSI), 64291 Darmstadt, Germany

2. Technische Universität München, Germany

3. TRIUMF, Vancouver, Canada

Original Proposal: F. Bosch, C. Brandau, C. Dimopoulou, H. Geissel, O. Klepper, C.

Kozhuharov, J. Kurcevicz, S.A. Litvinov, C. Nociforo, F. Nolden, C. Scheidenberger, U. Spillmann, M. Steck, T. Stöhlker, K. Takahashi, H. Weick, M.K. Pavicevic, G. Amthauer, I. Anicin, V. Pejovic, B.S. Meyer, Z. Djurcic, K. Blaum, D. Shubina, N. Winckler, T. Faestermann, P. Kienle, B. Boev

E121 Technical Specifics

- ²⁰⁶Pb enriched source at 10⁹ pps
 & 705 MeV/u in SIS.
- Spallation on Be target + FRS delivers 400 MeV/u²⁰⁵Tl⁸¹⁺ ions.
- ~100 stacks injected into ESR per storage.
- Non-destructive Schottky detectors monitor beam in ESR.

(https://www.linkedin.com/in/ragandeep-singh-sidhu-2b2797b7).

LOREX Specifics

- t1/2(205Pb) = 17.3(7) Ma.
- Geological age of Lorandite ore is 4.31(2) Ma.
- Background 205Pb signal from muon induced reaction.
- Radioactive impurity level very low in crystals.

ESR Specifics

- O Circumference: 108.3 m.
- Magnetic rigidity: 10 Tm.
- Ultra high vacuum: ~10⁻¹¹ mbar.
 - Detectors deployed in pockets to maintain vacuum.
 - Whole ring can be baked at ~300°C.