Searching for low-energy shape coexistence in 80Ge

Fatima H. Garcia

for the GRIFFIN Collaboration

fatimag@sfu.ca

Feb 2021
Shape coexistence

Andreyev et al., Nature 403, 430 (2000)

Fatima H. Garcia (SFU)
A recent experiment probed the structure of doubly magic ^{78}Ni. An excited 2^+ state was observed at only 0.31 MeV above the 2_1^+, suggesting shape coexistence in this nucleus.

78Ni is proposed to be a portal to the fifth island of inversion*.

NNDC, Brookhaven National Laboratory

Low-lying Coexistence in 80Ge

An ALTO experiment observed a state 0^+_2 state in 80Ge at 639 keV, through a conversion electron peak at 628 keV.

A coincidence was also observed between the 628-keV conversion electron peak and a 1764-keV γ-ray, from a proposed 2403 keV state.

The binding electron of the K-shell electron in 80Ge is 11 keV

Gottardo, A. et al., PRL 116, 182501 (2016)
GRIFFIN for β-decay spectroscopy

Quality of the dataset

Experimental details:

- ^{80}Ga β-decay to ^{80}Ge
- Run time: 51 hrs
- 78% ^{80}Rb contaminant
- 22% ^{80}Ga at 2×10^4 pps
- $6^-\ 80\text{gs Ga}$: 53%
- $3^-\ 80\text{m Ga}$: 46%

Garcia, F. H. et al., *PRL* 125, 172501 (2020)
Contradictory Results

The GRIFFIN experiment used PACES for conversion electron detection.

ALTO 1628: \(\sim 0.08\% \)

GRIFFIN 2\(\sigma \) limit: <0.02\%

Gottardo, A. et al., *PRL* 116, 182501 (2016)
Garcia, F. H. et al., *PRL* 125, 172501 (2020)
Searching for transitions

Limits were calculated to determine detection sensitivity.

ALTO I_{1764}/I_{1772}: 0.3

GRIFFIN I_{1764}/I_{1772} 2σ limit: 0.003

Gottardo, A. et al., *PRL* 116, 182501 (2016)

Garcia, F. H. et al., *PRL* 125, 172501 (2020)
The broad peak at 1764 keV is in fact four different transitions (red), observed in different gates (blue);
Theoretical considerations

Large-scale shell model calculations were performed, and were able to reasonably predict intruder configurations in neighbouring isotopes.

Garcia, F. H. et al., *PRL* 125, 172501 (2020)
Current status and the future of ^{80}Ge data

Analysis is still ongoing. The dataset is quite rich.

Highlights:
- ~77 newly observed transitions
- 10 previously observed transitions placed
- ~41 newly observed excited states

Next steps:
- β-feeding analysis for tentative spins
- Angular correlations for spin assignment
- Lifetime measurements of the 2^+ and 4^+
SFU
C. Andreoiu, A. Bell, I. Djianto, M. Gascoine, K. Ortner, K. Raymond, K. Whitmore

TRIUMF
G. C. Ball, N. Bernier, S. Bhattacharjee, M. Bowry, A. B. Garnsworthy, I. Dillman, G. Hackman, A.N. Murphy, B. Olaizola, R. Umashankar, J. Williams, D. Yates

CNRS/IN2P3
C. M. Petrache

Colorado School of Mines
K. G. Leach, C. R. Natze

Tennessee Technical University
M. M. Rajabali

Université de Strasburg
F. Nowacki

Universidad Autónoma de Madrid
A. Poves

University of Guelph
F. A. Ali, R. J. Coleman, C.E. Svensson

University of Maryland - College Park
A. M. Forney

University of Kentucky
E. E. Peters
Thank you
80Ge experiment comparisons

GRiffin
- ISOL: p⁺ reactions
- Yield: 2.4×10⁴ pps
- 80gs Ge: 53% / 80m Ge: 46%
- 15 HPGe
- ϵ (1.3 MeV): 8%
- 5 Si(Li)
- 10 plastic scintillators

Gottardo et al.
- Photofission
- Yield: ~ 10⁴ pps
- 1 HPGe
- ϵ (1.3 MeV): 0.7%
- 1 Si(Li)
- 1 plastic scintillator

Verney et al.
- Photofission
- Yield: 9.4×10³ pps
- 80gs Ge: 48% / 80m Ge: 52%
- 2 HPGe
- ϵ (1.3 MeV): 1.4%
A major concern that presented itself during the analysis was the quantity of each of the ground state and isomer of 80Ge in the beam.

The 6(−) g.s. and 22.4 keV 3(−) isomer in 80Ga are known to β-decay. ENSDF only shows the 3(−) isomer β-decaying, but there is a high lying (8^{+}) in 80Ge that has a non-zero β-feeding intensity. This can only be fed by the ground state in 80Ga.
To prove we had a comparable isomeric mixture, we chose two independent states to examine:

- (2^+) 1573-keV state fed only by the $3(−)^{80m1}$Ga
- (8^+) 3445-keV state fed only by the $6(−)^{80gs}$Ga

We compared the β-feeding intensities in our experiment and those in ENSDF and discovered a decrease of 0.66 in feeding of the 1573-keV state and an increase of 1.55 to the 3445-keV state.

Given the ENSDF set contains a beam composition of 62% of the $(3−)$ isomer, we calculate a value of 41% of the same component.

Based on the data in the paper, ALTO observed 52% of 80m1Ga in their beam.
The authors also employed theoretical models to show lowering of the 0_2^+ in context of different energy contributions.

The theoretically calculated value was in good agreement with their experimentally observed value.

Gottardo, A. et al., *PRL* 116, 182501 (2016)