Astrophysical Tau Neutrinos in the Pacific Ocean

Akanksha Katil Supervisor: Dr. Juan Pablo Yáñez Garza Feb 10 WNPPC 2021

Astrophysical Neutrinos

- First detected in IceCube.
- Unobstructed view of Universe **above** tens of TeV.
- Energy 1000 times > highest neutrino produced in particle accelerators.
- Study the sources and production mechanisms. 3 flavours - electron, muon, tau.
- Each flavour has a characteristic signals.

Astrophysical Tau Neutrinos

- Double pulse signature.
- Important implications:
 - Reaffirm astrophysical origins of neutrinos
 - Oscillations on cosmological scales.
- 20-40% of astrophysical flux, but IceCube on verge of detection first v_only now Why?
 - Scattering in ice
 - Low stats at higher energies

What if a neutrino telescope is deployed in water, where scattering is considerable less?

Pacific Ocean Neutrino Explorer

- <u>Planned neutrino telescope in the Cascadia</u>
 <u>Basin near Vancouver Island.</u>
- P-ONE + other neutrino telescopes = an increased sky coverage.
- P-ONE phase 1 1 segment, 10 strings and 200 DOMs,
- Long term goal 7 segments, 70 strings, 1400 DOMs.

Can P-ONE phase 1 contribute in detecting astrophysical v_r ?

Simulation

Simulation Parameters

- Absorption and scattering lengths of Cascadia Basin*.
- 24 3" PMTs and a flat angular acceptance of 0.811. The wavelength acceptance = IceCube DOM
- No granularity in hits.
- Hits within 3 ns are merged as on. 0 -1.5 ns smear is added to the timestamps
- 40,000 v_r and v_e events simulated in total between energies 100 TeV to 5PeV.

IceCube mDOM

Wavelength(nm)	Scattering Length(m)	Effective Scattering Length(m)	Absorption Length(m)		
365	32.30	163.16	9.21		
405	56.78	286.81	17.56		
465	66.87	337.78	31.87		

* Taken from Andreas Gaertner's analysis

Analysis

Expected v_{τ} In A Year

- Desired v_{τ} events:
 - Charged Current interactions.
 - Interaction vertex should be within 100m around the detector volume in X and Y axis.

NuTau Log Energy Distribution

Goal of the Analysis

Develop an algorithm that identifies v from the background

Background from atmospheric muons, CC v_e and NC interactions from all flavoured neutrinos.

The Method

- The algorithm fits both a single exponential gaussian and double exponential gaussian to every DOM in the event.
- Single exponential gaussian(expGauss) mean, width, amplitude and k(defines how exponential the tail is).
- Double expGauss = expGauss₁ + exp Gauss₂

The Algorithm

The Fit

• The minimizer minimizes the -log likelihood value. Takes bounds and initial values

$$-\ln L = \sum_{i} \ln \left(n_i! \right) + \mu_i - n_i \ln \mu_i$$

- Multiple checks done to improve the algorithm.
- Sensitive to initial values performing a grid search.

Parameters for Comparison

- Time Difference = position₂ position₁
- Width Difference = |width₂ width₁|
- Amplitude Ratio = amp₁/amp₂
- k difference = $|k_2 k_1|$
- LLH difference = 2*(LLH_{DeG} LLH_{eG})

- Some separation in log amplitude ratio.
- Most separation observed in log 2**∆**LLH.

5

Introducing cuts in the data using log 2ALLH(CUT VARIABLE) values will be most effective.

Separating signal from background

- At cut variable 1.1 there is equal probability of the event being either a v_{τ} or background event
- Total v_{τ} events in a year is 0.39. Can this number be improved?

Improving the Number of v_{τ} events/year

Conditions Changed	Total Background Events	Total NuTau Events	Intersection Point	Tau Neutrino Events at Intersection Point	
Number of hits in DOMs > 200	0.72	0.39	1.1	0.21	
Number of hits in DOMs > 100	1.11	0.59	1.3	0.22	
Number of hits in DOMs > 0	1.78	0.88	1.3	0.27	
Number of bins >= 9 1.87		0.9	1.3	0.27	
Entries Ratio > 0.1	2.1	0.97	1.5	0.28	

Energy Distributions

Energy distribution of signal and background at intersection point.

Cut Variable = 1.3

Cut Variable = 1.3

Conclusions

- The algorithm is successful in separating v_r from the background.
- LLH ratio between single/double ExpGauss fits is the most effective parameter that shows a clear separation between tau neutrino and background.
- ~1 v_r events expected in a year if the algorithm is capable of identifying all v_r from the background.
- ~0.3 tau neutrino events with cut variable > 1.3 are detected in a year in P-ONE phase 1.

THANK Any Questions? YOU!

Credits: This presentation template was created by Slidesgo.

Simulation Steps

> More on Analysis

Step 1: Neutrino Generator(NuGen)

- Injected neutrinos are forced to interact within a given cylinder volume.
- Types of neutrino interactions:
 - CC Charged Current Makes charged leptons and hadronic or EM showers 0
 - NC- Neutral Charged Current Makes a secondary neutrino and hadronic showers. 0
- Parameters given to NuGen:
 - Flavour: $v_{r}:v_{r}:v_{e}:v_{e} = 1:1:1:1$ Energy: 100TeV to 5PeV

 - Power law index: 2.19
 - Azimuth: 0 to 180 degrees
 - Zenith: 0 to 180 degrees
 - Height of cylinder: 1000m
 - Radius of cylinder: 500m
 - Events per file: 20

Neutrino Distributions

- Energy range given to the simulation is 100TeV - 5PeV
- Energy distribution looks as expected.
- Simulating events between Zenith(-45, 45) and Azimuth(0, 180), no bias

observed.

NuTau Log Energy Distribution

Vertex of Interaction of Neutrinos

Distributions of interactions of neutrinos to produce corresponding lepton

The dimensions of interaction cylinder given - Radius - 500m, height - 1000m, centered at (0, 0, 0)

Step2: PROPOSAL

- Propagates secondary charged particles in ice.
- Medium of propagation not changed to water since the difference is negligible.
- Verifying **τ** propagation:
 - Histogram of tau decay time fit to an exponential curve given by:
 - ^o The decay time $N = N_0 e^{\frac{-t}{T} \ln N_0} = N$ umber of taus produced initially given by: T = Life time of tau in rest frame

E = Energy of tau m = Mass of tau [1776.86 MeV] $\tau = \text{Lifetime of tau [2.9 \times 10^{-4} \text{ ns}]}$

Step2: PROPOSAL

Step 3: CLSim - Changing the Medium

- Generate and propagate photons.
- To propagate photons in CLSim, medium should be changed to water.
- The optical properties in IceCube are defined by the following equations

$$b_e = b_{e,400} \left(\frac{\lambda}{400}\right)^{-\alpha}$$

$$a = a_{dust,400} \left(\frac{\lambda}{400}\right)^{-\kappa} + Ae^{-B/\lambda} (1 + 0.01\Delta T) \longrightarrow \text{Ignored, need}$$
more data

 $b_{\rm e}^{}$ - effective scattering coefficient at a given wavelength $\pmb{\lambda}$ $b_{\rm e,400}^{}$ - scattering coefficient at wavelength 400 nm

a - absorption coefficient at a given wavelength λ a_{dust,400} - absorption coefficient at wavelength 400 nm Exponential component of wavelength dependence is ignored

Phase Function

• The phase function $P(\cos\theta)$ is chosen to be a combination of Henyey Greenstein(HG) and simplified Liu(SL)

$$P(\cos\theta) = fsl \cdot \frac{SL(\cos\theta)\sin\theta}{\int_0^{\pi} SL(\cos\theta)\sin\theta d\theta} + (1 - fsl) \cdot \frac{HG(\cos\theta)\sin\theta}{\int_0^{\pi} HG(\cos\theta)\sin\theta d\theta}$$
$$HG(\cos\theta) = \frac{1}{2} \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{\frac{3}{2}}}$$
$$SL(\cos\theta) = \frac{1 + \zeta}{2} \left(\frac{1 + \cos\theta}{2}\right)^{\zeta}, \quad \zeta = \frac{2g}{1 - g}$$

- The phase function of water is closer to HG. Therefore, contribution by SL function is neglected by setting fsl(Fraction of Simplified Liu) to 0.
- g average scattering angle given by

$$\langle \cos \theta \rangle = \eta \cdot \langle \cos \theta \rangle_{molecular} + (1 - \eta) \cdot \langle \cos \theta \rangle_{particulate}$$

Effective Scattering Length

• The simulation takes effective scattering length.

$$\lambda_{
m sct}^{
m eff} \equiv rac{\lambda_{
m sct}}{1 - \langle \cos heta
angle}$$

$$\langle \cos \theta \rangle = \eta \cdot \langle \cos \theta \rangle_{molecular} + (1 - \eta) \cdot \langle \cos \theta \rangle_{particulate}$$

• $\langle \cos \theta \rangle_{\text{molecular}} = 0$

- $\langle \cos \theta \rangle_{\text{particulate}} = 0.924 (\text{from Antares paper})$
- $\eta = 0.132$ (Matthew Man's Analysis)

- Current STRAW analysis considers equal probability for forward and backward scattering.
- For a more correct approach η(fraction of molecular scattering) is included.

Determining Parameters

• The simulation uses scattering coefficient($b_{e,400}$), α , absorption coefficient($a_{e,400}$) and κ obtained from the fit of the data points.

- Phase function in software defined by Simplified Liu(SL) and Henyey Greenstein(HG).
- Phase function of water closer to HG, thus SL ignored by setting fsl = 0

Verification: Simulating Multiple Flashers

- Simulating multiple flashers, spaced equally in cosine of zenith, for isotropic flashes.
- The pulse shape of multiple flashers is akin to pulse shape of a single flasher.
- DOM position is fixed and flasher position is changed according

Flasher Isotropy

Number of flashers

- Number of flashers
 simulated should be large
 enough to avoid gaps in
 cosine zenith.
- Current analysis simulates 200,000 flashers

Time Residuals

Great tool to test the inputs from STRAW analysis.

Step 4: PE Hit Generator - mDOM

- Once the photons reach a DOM, the probability of a photon generating a photo electron(PE) depends on:
 - Quantum efficiency of PMT
 - Wavelength Acceptance of DOMs(DOM efficiency)
 - Angular Acceptance of DOMs
 - Photon Weight

Probability of Hit = relative DOM eff × DOM eff × ang Acc × photon weight

- A simple custom code written to facilitate changes to properties of the DOM.
- Verified the accuracy compared against IceCube code

mDOM Properties

- The wavelength acceptance is set to be the same as IceCube's.
- Angular acceptance of mDOM = 0.811

Step 5: Noise Generator

- Time taken for the first and the last photon to hit a DOM in a tau neutrino event is about 1-3 microseconds.
- Considering an event window of about 7.2 microseconds.
- Since noise scales with area, 24 random chunks of 7.2 ms from STRAW data, overlaid on each other, to generate noise in mDOM

Injecting Noise in mDOMs for a Single Event

• For a single neutrino event the noise hits are chosen to be injected such that they are centered around the mean time of physics hits.

Weighting Events

$$weight_{CC} = \frac{\phi_{astro} \times OneWeight}{N/4}$$

$$weight_{NC,\nu_{\mu}} = \frac{(3\phi_{astro} + \phi_{atmo,\nu_{\mu}}) \times OneWeight}{N/2}$$

$$weight_{NC,\overline{\nu}_{\mu}} = \frac{(3\phi_{astro} + \phi_{atmo,\overline{\nu}_{\mu}}) \times OneWeight}{N/2}$$

N = Number of files $OneWeight = \text{Taken from I3MCWeight} \qquad \frac{d\Phi_{\nu+\bar{\nu}}}{dE} = (1.01 \pm ^{0.26}_{0.23}) \left(\frac{E}{100 \text{ TeV}}\right)^{-2.19 \pm 0.10} \cdot 10^{-18} \text{GeV}^{-1} cm^{-2} s^{-1} sr^{-1}.$

Bounds and Initial Values of the Fit

 Width needs to be negative, to change the direction of the exponential tail. However, the caveat here is that the minimizer outputs a NaN once it starts considering width values between (-0.999, 0.999)

-0.05513

-14.3644

	pos1	wid1	k1	amp1	pos2	wid2	k2	amp2	log l	ikelihood	
	-14.4044	-0.0734752	0.134472	237.057	-5.96877	18.3955	6.09133	248.598		nan	
	pos1	wid1	k1	amp	1 pc	os2 w	id2	k2	amp2	log li	kelihood

-5.99934

23.245

1.34232

74.7544

• The same with k, values should be between (0, 0.99).

0.427769

638.78

nan

Tau length Correlation

- Ideally large tau length would mean large cut variable value .
- What happens with DOMs with large tau length and small cut variable?
 - Vertices(Tau creation and tau decay) are outside the detector.
 - Tau decays into a muon
 - DOM is not at an ideal distance from the vertices.

51

Improving the Number of v_r events/year

Number of hits in DOMs > 200

Number of hits in DOMs > 0

Number of bins >= 9

The intersection point moves to the right as the number of events included in the analysis increases.

107

Energy Distributions - Tau neutrino events

• The energy distribution shifts to the right as higher cut variable is imposed.

Energy Distribution - NuE&NC events

• The energy distribution shifts to the right as higher cut variable is imposed.

Suspicious NuEs and NC events

Time Difference

