Search for Dark Matter Produced in Association with a Dark Higgs Boson with the ATLAS Detector

WNPPC Conference

Danika MacDonell
Supervisor: Bob Kowalewski
February 9, 2021
Dark Matter Detection

Direct detection searches:
- Dark matter scatters off particle (nucleon, photon, etc.) in detector material
 - Measure recoil energy
- Search target: galactic dark matter

Collider searches:
- Dark matter produced in high-energy collision along with detectable particle(s)
- Search target: dark matter produced by collision
Dark Matter Detection

Direct detection searches:
- Dark matter scatters off particle (nucleon, photon, etc.) in detector material
 - Measure recoil energy
- Search target: galactic dark matter

Collider searches:
- Dark matter produced in high-energy collision along with detectable particle(s)
- Search target: dark matter produced by collision
The ATLAS Detector

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC

- Used both for precision standard model measurements and to search for new physics
The ATLAS Detector

- Showers initiated by quarks and gluons referred to as “jets”
- Jets reconstructed in cone of angular radius R
 - “small-radius” jet: $R=0.2 \rightarrow 0.4$
 - “large-radius” jet: $R=0.8 \rightarrow 1.0$

$$R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$
The ATLAS Detector

- Neutrinos (ν) and dark matter particles (χ) pass through undetected
 → Presence inferred from imbalance of momentum transverse to the beam line, a.k.a. E_T^{miss}

$$E_T^{\text{miss}} = - \left| \sum \vec{p}_T \right|$$
Dark Matter Production Models for Collider Searches

Effective Field Theories (EFT)
- Dark matter production mechanism unspecified

Simplified Models
- First-order description of new physics
- Bridge gap between EFT and complete models

Complete Models
- Dark matter predicted as part of a complete unified theory
 - Eg. Supersymmetry
Dark Matter Production Models for Collider Searches

Effective Field Theories (EFT)
- Dark matter production mechanism unspecified

Simplified Models
- First-order description of new physics
- Bridge gap between EFT and complete models

Complete Models
- Dark matter predicted as part of a complete unified theory
- Eg. Supersymmetry
“Dark Higgs” Signal Model

- **χ**: Dark Matter
 - Mass fixed to 200 GeV for consistency with other LHC searches

- **Z’**: Vector boson in dark sector
 - Mass not fixed in model
 - Search region explores $m_{Z'} > 2m_\chi$, thus allowing for $Z' \rightarrow \chi\chi$ decay

- **s**: Higgs boson in dark sector (a.k.a. “dark Higgs”)
 - Mass not fixed in model
 - Search region explores $m_s < 2m_\chi$, thus forbidding $s \rightarrow \chi\chi$ decay

10.1007/JHEP04(2017)143
Search with Dark Higgs Decay to WW

- Search for dark Higgs model in $s \rightarrow bb$ channel was completed in 2019 (ATL-PHYS-PUB-2019-032)

- $s \rightarrow bb$ decay has highest cross section for $m_s \lesssim 135$ GeV

- $s \rightarrow WW$ dominates for high-mass dark higgs

⇒ Motivates dedicated dark matter search in $s \rightarrow WW$ channel
Search in Hadronic Channel (WW → qqqq)

Completed in late 2020
- Used full ATLAS Run 2 data

Signature in ATLAS detector:
- Hadronic jets in calorimeter recoiling against missing transverse momentum from $\chi\chi$
- WW pair boosted due to high-mass Z' mediator

Dominant standard model background:
Z+jets (where $Z \rightarrow \nu\nu$)
Search in Hadronic Channel (WW → qqqq)

- Constrained dark Higgs model parameters m_s and $m_{Z'}$ in the appx. range:

 $160 \text{ GeV} < m_s < 240 \text{ GeV}$

 ($s \rightarrow bb$ coverage: $50 \text{ GeV} < m_s < 150 \text{ GeV}$)

Search in Semileptonic Channel ($WW \rightarrow qq\ell\nu$)

Ongoing → search began last February
- Using full ATLAS Run 2 data

Signature in ATLAS detector:
- Hadronic jets + lepton in calorimeter recoiling against E_T^{miss} from $\chi\chi$
- E_T^{miss} includes contributions from $\chi\chi$ and ν

Semileptonic: One W now decays to $\ell+\nu$
Semileptonic vs. Hadronic Channel

Pros

● 1-lepton requirement reduces some backgrounds compared with hadronic channel (eg. Z+jets)

● Ability to reconstruct hadronically-decaying W boson → can select for mass window near on-shell W mass (80.4 GeV)

Cons

● ν in final state:
 ○ adds additional (non-dark-matter) source of E_T^{miss}
 ○ prevents direct reconstruction of dark higgs candidate
 ■ Developed a minimization strategy for approximate dark higgs mass reco (see backup)
Semileptonic Channel: Transverse Mass

\[m_T(\ell, E_T^{\text{miss}}) = \sqrt{2p_{T,\ell}E_T^{\text{miss}}(1 - \cos \theta_{\ell, E_T^{\text{miss}}})} \]

- Expectation for standard model background (for on-shell W):
 \[m_T(\ell, E_T^{\text{miss}}) \leq m_W \]

- Dark matter in signal model adds \(E_T^{\text{miss}} \) with different \(\cos \theta_{\ell, E_T^{\text{miss}}} \) distribution

- Selecting \(m_T(\ell, E_T^{\text{miss}}) > 200 \text{ GeV} \) substantially reduces standard model backgrounds, especially W+jets

- **Interesting feature:** Remaining W+jets background is mainly events with very off-shell W mass (\(>> 80.4 \text{ GeV} \))
Semileptonic Channel: Analysis Regions

Resolved Category
- Less-boosted
- Hadronized quarks reconstructed as two resolved small-radius jets

Merged Category
- More-boosted
- Hadronized quarks reconstructed as large-radius jet
Semileptonic Channel: Analysis Regions

Resolved category: Higher stats, lower signal/background

Merged category: Lower stats, higher signal/background

No signal scaling
Summary

- Ongoing search for dark matter production with \(WW + E_{T \text{miss}} \) in final state
- Motivated and optimized with “dark Higgs” simplified model
- Exclusion limits have been set in \(WW \rightarrow qqqq \) final state
- Search in \(WW \rightarrow qq\ell\nu \) final state ongoing
Backup Slides
Definitions

Transverse Mass

- Reconstructed mass of two final-state objects in the plane transverse to the LHC beam line
- Transverse mass between lepton and E_T^{miss} is defined assuming lepton and E_T^{miss}-producing object(s) are appx. massless:

$$m_T(\ell, E_T^{\text{miss}}) = \sqrt{2 p_T, \ell E_T^{\text{miss}} (1 - \cos \theta_{\ell, E_T^{\text{miss}}})}$$

Missing Transverse Energy (E_T^{miss})

- Total momentum of undetected final-state objects in the plane transverse to the beam line
- Two-dimensional vectorial sum over all visible final-state objects in the transverse

$$\vec{E}_T^{\text{miss}} = - \sum_i \vec{p}_{x,i} + \vec{p}_{y,i}$$

LHC Run 2

- Data collected at the LHC from 2015-2018 at a proton-proton collision energy of 13 TeV
Definitions, cont.

Pseudorapidity

- Describes angle of particle relative to beam axis (z-axis)
- Changes $\Delta \eta$ in pseudorapidity are Lorentz invariant under boosts along the longitudinal axis

\[
\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]
\]

- $\Delta N/\Delta \eta$ is approximately constant for $|\eta| \leq 5$
 - N: number of charged tracks in pileup events
Dark Matter Detection

Direct detection searches:
- Low energy (~keV)
- Low background

Collider searches:
- High energy (~TeV)
- High background
Dark Matter Detection

Direct detection searches:
- Low energy (~keV)
- Low background

Collider searches:
- High energy (~TeV)
- High background

Sudbury, ON

~2 km

SNOLAB
Search in Hadronic Channel ($WW \rightarrow qqqq$)

- Most sensitive in the “merged” regime
- None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

Search in Hadronic Channel ($WW \rightarrow qqqq$)

Merged Category
- Most boosted regime
- None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

Intermediate Category
- Less-boosted regime
- Some of the jets can be resolved into individual small-radius jets
Search in Hadronic Channel (WW → qqqq)

Search in Hadronic Channel (WW → qqqq)

- Most sensitive in the “merged” regime
- None of the jets can be resolved into individual small-radius jets → all reconstructed within a single large-radius jet

Analytical Solution of m_S in $s \rightarrow WW \rightarrow qq\ell\nu$ System

- **Idea:** Find the minimum m_S consistent with observed W_H and ℓ momenta and W mass constraint $m_W = 80.4$ GeV.

1. In frame where ℓ travels along the z axis and W_H is in the xz frame:

 \[
 m_S^2 = (p_{W_H} + p_\ell + p_{\nu})^2
 \]

 \[
 m_S^2 = (E_{W_H} + E_\ell + E_{\nu})^2 - (p_{W_{Hx}} + E_\nu \sin \theta_{\ell\nu} \cos \phi_{\nu})^2
 \]

 \[
 - (E_\nu \sin \theta_{\ell\nu} \sin \phi_{\nu})^2 - (E_\ell + p_{W_{Hz}} + E_\nu \cos \theta_{\ell\nu})^2
 \]

2. Determine ϕ_{ν} and $\theta_{\ell\nu}$ that minimize m_S.
 - $\phi_{\nu} = 0$, and $\theta_{\ell\nu}$ can be solved for numerically.

3. Eliminate E_ν using W mass constraint for $W \rightarrow \ell\nu$ system, then rotate back to lab frame.
The TAR Algorithm

Use excellent angular resolution of the ATLAS tracker system

\[
p_{T,\text{track,new}} = p_{T,\text{track,old}} \times \sum_{i \in j} \frac{p_{T,i}}{p_{T}}
\]
Asimov Signal Significance

Expected Asimov signal significance Z used in optimizing selection cuts. Defined as:

\[
Z = \sqrt{2} \left[\ln \left(\frac{(s + b)(b + \sigma_b^2)}{b^2 + (s + b)\sigma_b^2} \right) - \frac{b^2}{\sigma_b^2} \ln \left(1 + \frac{\sigma_b^2 s}{b(b + \sigma_b^2)} \right) \right]
\]

s: expected number of signal events (based on simulation)

b: expected number of background events (based on simulation)

σ_b: uncertainty associated with expected number of background events
Search with Dark Higgs Decay to bb

- Search completed in 2019
 - ATL-PHYS-PUB-2019-032
 - Used partial ATLAS Run 2 data
- Placed upper limits on $m_{Z'}$ in dark Higgs model for $50 \text{ GeV} < m_s < 150 \text{ GeV}$
Search with Dark Higgs Decay to WW

- $s \rightarrow bb$ decay has highest cross section for $m_s \lesssim 135$ GeV
- $s \rightarrow WW$ dominates for high-mass dark higgs
 ⇒ Motivates dedicated dark matter search in $s \rightarrow WW$ channel
The ATLAS Detector

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC

- Used both for precision standard model measurements and to search for new physics
The ATLAS Detector

- General-purpose detector for studying particles produced by high-energy beam collisions at the LHC
- Used both for precision standard model measurements and to search for new physics
The ATLAS Detector
The ATLAS Detector

- Inner tracker detects charged particles (leptons and hadrons)
The ATLAS Detector

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (γ) via EM showers
The ATLAS Detector

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (γ) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Showers initiated by quarks and gluons are referred to as “jets”

Jets reconstructed in cone of angular radius \(R \)

\[
R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
\]

- “small-radius” jet: \(R=0.2 \rightarrow 0.4 \)
- “large-radius” jet: \(R=0.8 \rightarrow 1.0 \)
The ATLAS Detector

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (\(\gamma\)) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Muon spectrometer detects muons, which pass through the calorimeters
The ATLAS Detector

- Inner tracker detects charged particles (leptons and hadrons)
- Electromagnetic (EM) calorimeter detects electrons and photons (γ) via EM showers
- Hadronic calorimeter detects hadrons which pass through the EM calorimeter via hadronic showers
- Muon spectrometer detects muons, which pass through the calorimeters
- Neutrinos (ν) and dark matter particles (χ) pass through undetected

→ Presence inferred from imbalance of momentum transverse to the beam line, a.k.a. E_T^{miss}