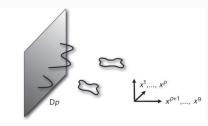


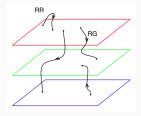
Search for String Resonances With the ATLAS Detector

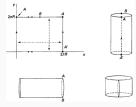

Fairhurst Lyons

Supervisor: D. Gingrich WNPPC 2021

University of Alberta

String Theory I

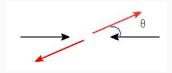

- Proposed alternative to SM describing all fundamental forces
- Instead of 0-d particles have 1-d strings (open or closed)
- Many string theories exist, we are interested in D-brane model
- Dp-brane is membrane with p spatial dimensions
- Point \rightarrow D0-brane, line \rightarrow D1-brane, plane \rightarrow D2-brane, etc...
- Closed strings propagate freely, open string ends attached to D-brane


Source: [1]

String Theory II

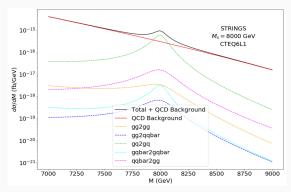
- Particles created by excitations of strings
- Closed strings lead to gravitons
- Gluons come from strings with ends attached to stack of 3 colour D-branes (top image)
- Quarks stretch between stack of 3 colour
 D-branes and stack of 2 weak D-branes
- Requires 10 spacetime dimensions
- Extra 6 spatial dimensions compactified (bottom image)
- Only gravity propagates in extra dimensions, SM fields restricted to 3-d space [2]

Source: [2]

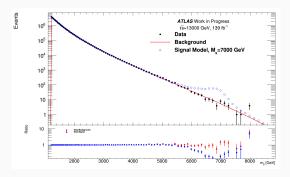

- Large gap between $M_{Planck} \sim 10^{19}~{
 m GeV}$ and $M_{EW} \sim 10^3~{
 m GeV}$
- Assume d-dimensional quantum gravity scale $M_d \sim 10^3~{
 m GeV}$
- 4-d gravity weak as observed
- $M_{Planck} \sim V_6 M_d$ where V_6 is volume of 6 compactified dimensions
- M_d small so V₆ large
- Some extra dimensions should be large
- Observed hierarchy explained [4]

- Interaction cross sections include massive string excitations
- String scale where string effects become noticeable $M_s \sim M_d \sim 10^3$ GeV
- Amplitudes must reduce to SM in low energy limit
- Introduce Veneziano factor which multiplies QFT amplitudes to give Veneziano amplitudes
- Veneziano factor ightarrow 1 for low E_{CM} , large for $E_{CM} \sim M_s$
- This Veneziano amplitude has resonances of excited string states
- Observed in colliders as increased cross section over SM prediction when $E_{CM} \sim M_s$ [4]

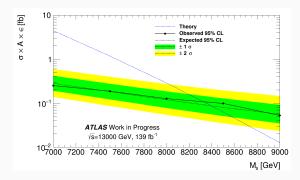
- Looking for deviation from SM at LHC
- String resonances can occur in pp collisions
- Compare QCD prediction to observed Invariant Mass $(M = \sqrt{\hat{s}})$ of quark/gluon interactions
- Search *M* distribution for resonant deviation from smooth background at TeV scale [4]
- Simulate events according to theoretical string amplitudes and compare with data from LHC
- Search Variable: dijet invariant mass


STRINGS Generator

- STRINGS-2.00 [5]
- Python Monte Carlo particle interaction simulator
- Generator creates $2 \rightarrow 2$ processes with quarks and gluons
 - gg
 ightarrow gg
 - gg
 ightarrow q ar q
 - $g \bar{q}
 ightarrow g \bar{q}$
 - gq
 ightarrow gq
 - $q\bar{q}
 ightarrow gg$
- Events generated and total cross section calculated based off of scattering amplitudes in [6]


Analysis

- Model is signal and background together, this is compared to data
- Background from Pythia dijet Monte Carlo QCD simulations
- Signal from STRINGS generator
 - 5 samples: *M*_s = 7000, 7500, 8000, 8500, 9000 GeV
- Data from ATLAS detector 2015-2018
- Pictured: Differential cross sections with $M_s = 8000$ GeV and PDF CTEQ6L1 generated by STRINGS [5]


Model vs Data

- Compare model (signal + bkg) to data
- Pictured: data, background, signal model with $M_s = 7000$ GeV
- No significant deviation from expected background
- No resonance observed in data, background fits better than model

Limit Setting

- Signal model constrained using Confidence levels (CLs) [7]
- 95% CL sets upper limits on observable signal ($\sigma \times A \times \epsilon$)
- $\sigma = \text{cross section}, A = \text{Acceptance}, \epsilon = \text{detector efficiency}$
- Compute 95% CL upper signal limit for $M_s = 7000 9000$ GeV
- Using string resonance model cross sections we set lower limit $M_s>8300~{\rm GeV}$ at 95% CL

- String theory can be probed at LHC
- Theory predicts resonance in *pp* collisions at $E_{CM} \sim M_s$
- Compare theoretical cross sections to observation
- No resonance in data
- Lower limit $M_s>8300~{\rm GeV}$ set with 95% confidence
- Higher energies to be investigated after LHC/ATLAS upgrades

References

[1] Luis E. Ibáñez and Angel M. Uranga.

String Theory and Particle Physics: An Introduction to String Phenomenology.

Cambridge University Press, 2012.

[2] Barton Zwiebach.

A First Course in String Theory.

Cambridge University Press, 2 edition, 2009.

[3] Leonard Susskind.

Phy32: String theory.

http://www.kensholabs.com/physics/susskind/StringTheory/StringTheory_C10.htm, Nov 2010.

[4] Dean Carmi.

TeV Scale Strings and Scattering Amplitudes at the LHC.

arXiv e-prints, page arXiv:1109.5161, September 2011.

[5] Pourya Vakilipourtakalou and Douglas M. Gingrich.

Monte carlo event generator for the production and decay of string resonances in proton-proton collisions, 2018.

[6] Luis Anchordoqui, Ignatios Antoniadis, De-Chang Dai, Wan-Zhe Feng, Haim Goldberg, Xing Huang, Dieter Lust, Dejan Stojkovic, and Tomasz Taylor.

String resonances at hadron colliders.

Physical Review D, 90, 07 2014.

[7] A L Read.

Presentation of search results: the CLs technique.

Journal of Physics G: Nuclear and Particle Physics, 28(10):2693-2704, sep 2002.