Light Dark Photon Detection with Atomic Transitions

Ningqiang Song

Based on arXiv 1909.07387 with Joseph Bramante and Amit Bhoonah

Queen's University, McDonald Institute, Perimeter Institute

Jan 9, 2021

Dark Photon and Kinetic Mixing

$$\mathscr{L} = -\frac{1}{4}(F_{\mu\nu}F^{\mu\nu} - 2\chi F_{\mu\nu}F^{'\mu\nu} + F_{\mu\nu}F^{'\mu\nu}) + \frac{m_{A'}^2}{2}A'_{\mu}A^{'\mu} - eJ_{\text{em}}^{\mu}A_{\mu}$$

Well motivated in SUSY, string theories, or as dark matter or dark sector mediator

Galison, Manohar' 1984 Holdom' 1986

Pospelov' 2008 Ackerman, Buckley, Carrol, Kamionkowsk' 2008 Arkani-Hame, Finkbeine, Slatyer, Weiner' 2008

Dark Photon and Kinetic Mixing

Galison, Manohar' 1984 Holdom' 1986

$$\frac{n_{A'}^2}{2} A'_{\mu} A^{\prime \mu} - e J^{\mu}_{\text{em}} A_{\mu}$$

Light Shinning through the Wall

Light Shining Though Walls (LSW): ALPS \bullet

ALPS II, 1302.5647

χ $A \sim A \sim A'$

Improved LSW: Superradiance

- Spontaneous emission: isotropic, exponential decay
- Superradiance (SR): anisotropic, collective deexcitation of the atomic system •

Dicke' 1954, Gross, Haroche' 1982

Macro Superradiance

- Dicke SR: Condition $k \cdot L \leq 1 \Rightarrow$ Coherence length $L \sim 1/k \sim \lambda \sim \mu m$
- Macro SR: Condition $\Delta k \cdot L \leq 1 \Rightarrow$ Coherence length $L \sim 1/\Delta k \gg \lambda \sim \mu m$

Macro Superradiance: Atomic System

- Dipole transitions through virtual states $|j_+\rangle$ are allowed
- Choose the first vibrational states of parahydrogen molecules pH_2

E1 dipole transitions between the ground state $|g\rangle$ and excited state $|e\rangle$ are forbidden due to selection rule

Electric field can tigger the collective deexcitation of $\ensuremath{pH_2}$

 $H = H_0 - \overrightarrow{d} \cdot \overrightarrow{E}$

Dark photon field tiggers the collective deexcitation of pH_2

- 1g>

 $H = H_0 - \overrightarrow{d} \cdot (\overrightarrow{E} + \chi \overrightarrow{E'})$

Dark photon field tiggers the collective deexcitation of pH_2

 $H = H_0 - \overrightarrow{d} \cdot (\overrightarrow{E} + \chi \overrightarrow{E'})$

11

Modified light-shining-through-wall setup

 Parahydrogen (pH₂) sample prepared in coherent excited states

Bhoonah, Bramante, **NS**, PRD 2020/1909.07387

Modified light-shining-through-wall setup

- Parahydrogen (pH₂) sample prepared in coherent excited states
- Shine laser to the wall

Modified light-shining-through-wall setup

- Parahydrogen (pH₂) sample prepared in coherent excited states
- Shine laser to the wall
- Dark photons penetrate the wall and deexicte $\ensuremath{pH_2}$

Modified light-shining-through-wall setup

- Parahydrogen (pH₂) sample prepared in coherent excited states
- Shine laser to the wall
- Dark photons penetrate the wall and deexicte $\ensuremath{pH_2}$
- Collect photons at two target ends

$$(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})E_1 + 2a_{eg}\rho_{ge}^*(E_2^* + \chi\eta E'^*)],$$

$$(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})(E_2 + \chi\eta E') + 2a_{eg}\rho_{ge}^*E_1^*],$$

$$(\partial_t + \partial_z)E' = \frac{i\omega^2 n}{\omega + k} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})(2\chi^2\eta E' + \chi E_2) + 2a_{eg}\rho_{ge}^*\chi$$

Sensitivity

Sub-meV dark photon sensitivity advanced by orders of magnitude

$$N_s \propto P_L N_{\rm rep} \chi^4 (N_{\rm pass} + 1) \sin^2 \left(\frac{m_{A'}^2}{4\omega} l \right)$$

CATCHY Experiment

Coherent Atomic Transitions by Counter-pulsing HYdrogen

17

Conclusions

- Macro superradiance achieved in a three-level atomic system at a rate $\Gamma \propto N^2$ lacksquare
- Dark photon field triggers collective deexcitation that leads to macro superradiance lacksquare
- Sensitivity advanced by orders of magnitude with an improved LSW setup •

Dicke Superradiance

Backup Slides

A Theoretical Overview I

Treat external fields as perturbations: $H = H_0 + H_I = H_0 - \vec{d} \cdot (\tilde{E}_1 + \tilde{E}_2 + \chi \tilde{E}')$ Schrodinger equation: $i\frac{\partial}{\partial t}|\psi\rangle = (H_0 + H_I)|\psi\rangle$ Introduce density matrix

$$\rho = \begin{pmatrix} |e\rangle\langle e| & |e\rangle\langle g| \\ |g\rangle\langle e| & |g\rangle\langle g| \end{pmatrix} = \begin{pmatrix} \rho_{ee} & \rho_{eg} \\ \rho_{ge} & \rho_{gg} \end{pmatrix}$$

Maxwell-Bloch equations

$$\partial_{t} \rho_{ee} = i(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg}) - \frac{\rho_{ee}}{T_{1}}$$
$$\partial_{t} \rho_{ge} = i(\Omega_{gg} - \Omega_{ee} - \delta)\rho_{ge} + i\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \frac{\rho_{ge}}{T_{2}}$$

$$\partial_{t} \rho_{ee} = i(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg}) - \frac{\rho_{ee}}{T_{1}}$$
$$\partial_{t} \rho_{ge} = i(\Omega_{gg} - \Omega_{ee} - \delta)\rho_{ge} + i\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \frac{\rho_{ge}}{T_{2}}$$

 Ω_{ii} functions of E, E', analogous to Rabi frequencies,

$|\psi\rangle = c_g e^{-i\omega_g t} |g\rangle + c_e e^{-i(\omega_e + \delta)t} |e\rangle + c_{i+} e^{-i\omega_j t} |j_+\rangle + c_{i-} e^{-i\omega_j t} |j_-\rangle$

deexcitation time $T_1 \sim 1000$ ns, decoherence time $T_2 \sim 10$ ns

A Theoretical Overview II

Maxwell-Bloch equations

$$\partial_t \rho_{ee} = i(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg}) - \frac{\rho_{ee}}{T_1}$$

 $\partial_t \rho_{ge} = i(\Omega_{gg} - \Omega_{ee} - \delta)\rho_{ge} + i\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \frac{\rho_{ge}}{T_2}$

$$\partial_t \rho_{ee} = i(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg}) - \frac{\rho_{ee}}{T_1}$$
$$\partial_t \rho_{ge} = i(\Omega_{gg} - \Omega_{ee} - \delta)\rho_{ge} + i\Omega_{ge}(\rho_{ee} - \rho_{gg}) - \frac{\rho_{ge}}{T_2}$$

Introduce Bloch vectors

$$r_{1} = \rho_{ge} + \rho_{eg}, r_{2} = i(\rho_{eg} - \rho_{ge}), r_{3} = \rho_{ee} - \rho_{gg}$$

$$\partial_{t}r_{1} = \left[-\frac{a_{gg} - a_{ee}}{4}(|\bar{E}_{1}'|^{2} + |\bar{E}_{2}'|^{2}) + \delta\right]r_{2} + a_{eg}\ln(\bar{E}_{1}'\bar{E}_{2}')r_{3} - \frac{r_{1}}{T_{2}},$$

$$\partial_{t}r_{2} = \left[\frac{a_{gg} - a_{ee}}{4}(|E_{1}'|^{2} + |E_{2}'|^{2}) - \delta\right]r_{1} + a_{eg}\operatorname{Re}(\bar{E}_{1}'\bar{E}_{2}')r_{3} - \frac{r_{2}}{T_{2}},$$

$$\partial_{t}r_{3} = -a_{eg}[\operatorname{Im}(\bar{E}_{1}'\bar{E}_{2}')r_{1} + \operatorname{Re}(\bar{E}_{1}'\bar{E}_{2}')r_{2}] - \frac{1 + r_{3}}{T_{1}}$$

where $\bar{E}'_1 = \bar{E}_1 + \chi \eta \bar{E}'$, $\bar{E}'_2 = \bar{E}_2 + \chi \eta \bar{E}'$

A Theoretical Overview III

Field equations

$$(\partial_t^2 - \partial_z^2) \tilde{E}_i = -n \partial_t^2 \tilde{P}_i ,$$

$$(\partial_t - \partial_z)E_1 = rac{i\omega n}{2}[(a_{ee}
ho_{ee} + a_z)E_2] = rac{i\omega n}{2}[(a_{ee}
ho_{ee} + a_z)E_2] = rac{i\omega n}{2}[(a_{ee}
ho_{ee} + a_z)E_2]$$

$(\partial_t^2 - \partial_z^2 + m_{A'}^2)\tilde{E}' = -\chi n \partial_t^2 \tilde{P}'$

 $a_{gg}\rho_{gg})E_1 + 2a_{eg}\rho_{ge}^*(E_2^* + \chi\eta E'^*)],$

 $a_{gg}\rho_{gg})(E_2 + \chi\eta E') + 2a_{eg}\rho_{ge}^*E_1^*],$

 $+ a_{gg} \rho_{gg} (2\chi^2 \eta E' + \chi E_2) + 2a_{eg} \rho_{ge}^* \chi E_1^*]$

Field Evolution

$$(\partial_t + \partial_z)E' = rac{i\omega^2 n}{\omega + k}[(a_{ee}
ho_{ee} -$$

• Dark photon triggers the emission of E_1 • E_1 triggers the emission of E_2 and E'

- $+ a_{gg} \rho_{gg} (2\chi^2 \eta E' + \chi E_2) + 2a_{eg} \rho_{ge}^* \chi E_1^*$

Field Evolution

- Dark photon triggers the emission of E_1 • E_1 triggers the emission of E_2 and E'• Symmetric emission E_1 and E_2

Signal vs Background

Signal: integrate the output electric field within ${\sim}20$ ns $N_s^1 = \frac{A}{\omega} \int_0^t |E_1(t')|^2 dt' = \frac{A}{\omega} \int_0^t |E_2(t')|^2 dt'$

 $E' \propto \chi \sqrt{P_L} \sin(rac{m_{A'}^2}{4\omega} I)$, $E_1 \propto \chi E'$

Signal vs Background

Signal: integrate the output electric field within ~ 20 ns $N_{s}^{1} = \frac{A}{A} \int_{0}^{t} |E_{1}(t')|^{2} dt' = \frac{A}{A} \int_{0}^{t} |E_{1}(t')|^{2$ $N_s \propto P_L N_{
m rep} \chi^4 (N_{
m pass}+1) \sin^2 (N_{
m pass})$

 $\omega_1 + \omega_2 = \omega_{eg}$ into random solid angle Rate $\frac{d\Gamma_{\rm sp}}{dz} = \frac{\omega_{eg}^7}{(2\pi)^3} N |a_{eg}|^2 z^3$

For $N \sim 10^{22}$, $N_{background} =$

Two-photon background can be neglected!

$$\frac{|E_2(t')|^2 dt'}{\left(\frac{m_{A'}^2}{4\omega}\right)}$$

Background: Spontaneous two-photon emission with frequency

$$^{3}(1-z)^{3}$$
, $z=\omega_{1}/\omega_{eg}$

$$2N\frac{d\Gamma_{\rm sp}}{dz}\Delta z\Delta t\frac{\Delta\Omega}{4\pi} = 4.3\times 10^{-9}$$

Dark Photon Sensitivity

Superradiance condition

Bhoonah, Bramante, **Song**' 2019

 $\Delta k \cdot L = (k_1 - k')L = (\omega - \sqrt{\omega^2 - m_{A'}^2})L \lesssim 1 \Rightarrow m_{A'} \lesssim \text{meV}$

Dark Photon Sensitivity

$$(\partial_t - \partial_z)E_1 = \frac{i\omega n}{2} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})E_1 + 2a_{eg}\rho_g]$$
$$(\partial_t + \partial_z)E_2 = \frac{i\omega n}{2} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})(E_2 + \chi\eta E)]$$
$$(\partial_t + \partial_z)E' = \frac{i\omega^2 n}{\omega + k} [(a_{ee}\rho_{ee} + a_{gg}\rho_{gg})(2\chi^2\eta E')]$$

- $\partial_t^2 E_1 n^2 \Omega_r^2 E_1 = 0$, $\Omega_r^2 \propto \omega^2 |a_{eg} r_1|^2$
- $N_s \propto \int |E_1|^2 dt \sim \frac{1}{n\Omega} e^{2n\Omega_r \Delta t}$

The sensitivity scales exponentially with number density n and coherence *r*

• Neglect propagation term, drop r_2 and spatial dependence

Technical Challenge

Large coherence \Rightarrow powerful laser

Large number density and long decoherence time \Rightarrow low T

pH_2 Reference	Density (cm^{-3})	Temperature (K)	Decoherence Time (ns)
60	$10^{19} - 10^{20}$	80-500	~ 10
42	$5.6 imes 10^{19}$	78	$\sim 8 \; (\mathrm{est})$
37	$10^{19} - 5 \times 10^{20}$	78	$\sim 10 \; (\text{est})$
61	$2.6 imes 10^{22}$	4.2	$\gtrsim 140$