

2021/02/09

## Searching for Neutrinoless Double Beta Decay at SNOLAB

#### Erica Caden (she/her) Research Scientist erica.caden@snolab.ca









# Double Beta Decay



### What we DO know about Neutrinos

- Fermion: spin 1/2, electrically neutral
- Only experience the weak force, rarely interacting with anything
- They come in three flavors associated with three other fundamental particles
  - electron, muon and tau
- They change, or oscillate, from one type to another
- Most abundant massive particles in the universe, 340/cm<sup>3</sup>







#### **Double Beta Decay**





M. Goeppert-Mayer

- Physical Review 48 (1935) 512
- forbidden



Candidate isotopes: Even-even nuclei where single  $\beta$  decay is

- Allowed in Standard Model
- Observed in 12 isotopes



#### **Neutrinoless Double Beta Decay**





E. Majorana

Nuovo Cimento 14, 171 (1937)



- Not yet observed
- Implies non conservation of
   lepton number
- Implies neutrinos are Majorana
   particles

### **Neutrinoless Double Beta Decay**

- Key experimental signature for 0vββ is a peak in visible energy at the Q-value of the nucleus, smeared by detector resolution.
- Requirements: 2.0 <sub>90</sub> 20-× 10-Large source mass dN/d(K\_/Q) 1.5-Good energy resolution Low backgrounds 1.0-0.5-0.0 0.2 0.6 0.4 0.0 K<sub>e</sub>/Q



Chose Isotope based on:

- 2vββ half-life
- Q-value
- Natural Abundance
- Detector Compatibility







#### **Neutrinoless Double Beta Decay**





The rate of  $0\nu\beta\beta$  is given by

 $\left(T_{1/2}^{0\nu}\right)^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ 

 $T_{1/2}$ : half-life G: phase space factor M: nuclear matrix element  $m_{\beta\beta}$ : effective neutrino mass

$$\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

# SNOLAB







SNOLAB is located on the traditional territory of the Robinson-Huron Treaty of 1850, shared by the Indigenous people of the surrounding Atikameksheng Anishnawbek First Nation as part of the larger Anishinabek Nation.

We acknowledge those who came before us and honour those who are the caretakers of this land and the waters.















SNOLAB is a science laboratory specializing in neutrino and dark matter physics. It's located 2 km underground in the active Vale Creighton nickel mine near Sudbury, Ontario, Canada.



.. ... ... ... ... ... ... ... ... ... ... ... ...





2 km of rock reduces the cosmic radiation by a factor of ~50 million!











# SNOF





- Floating Deck
- Urylon liner: Rn seal
- Acrylic Vessel
  - Φ 12 m,5 cm thick
- Water shielding
  - 1.7 kt inner, 5.3 kt outer
- ►~9300 PMTs, 50% coverage





- Upgraded DAQ
- New Calibration Systems
- Replaced Hold Up Ropes
- Optical Monitoring System
- Hold Down Rope Net
- 780 t Liquid Scintillator
- 3.9 t Tellurium



#### **SNO+ Physics Program**



Solar Neutrinos





Geo Antineutrinos



**Reactor Antineutrinos** 







Supernovae

#### **Nucleon Decay**



**Double Beta Decay** 



### **SNO+Timeline**









## **SNO+Timeline**

- 1. Water Phase (May 2017-July 2019)
  - Detector Calibration [Phys.Rev.C102,014002(2020)]
  - Backgrounds Measurement

- Solar <sup>8</sup>B Flux [Phys.Rev.D99 (2019) 012012]
- Invisible Nucleon Decay [Phys.Rev.D99 (2019) 032008]











## **SNO+ Timeline**

- 1. Water Phase (May 2017-July 2019)
  - Detector Calibration [Phys.Rev.C102,014002(2020)]
  - Backgrounds Measurement
  - Solar <sup>8</sup>B Flux [Phys.Rev.D99 (2019) 012012]
  - Invisible Nucleon Decay [Phys.Rev.D99 (2019) 032008]
- 2. Scintillator Phase (Currently)
  - Detector Calibration
  - Background Measurements
  - Antineutrino Measurements
  - Supernova Neutrinos











## **SNO+ Timeline**

- 1. Water Phase (May 2017-July 2019)
  - Detector Calibration [Phys.Rev.C102,014002(2020)]
  - Backgrounds Measurement
  - Solar <sup>8</sup>B Flux [Phys.Rev.D99 (2019) 012012]
  - Invisible Nucleon Decay [Phys.Rev.D99 (2019) 032008]
- 2. Scintillator Phase (Currently)
  - Detector Calibration
  - Background Measurements
  - Antineutrino Measurements
  - Supernova Neutrinos
- 3. Te-loaded Phase (Late 2021)
  - Neutrinoless Double Beta Decay
  - <sup>130</sup>Te (34% nat. ab.)
  - 0.5% loading by mass (1.3t of <sup>130</sup>Te)













**3 February 2021** 

4 4 A A

![](_page_20_Picture_2.jpeg)

![](_page_21_Picture_0.jpeg)

Tellurium Diol Plant Commissioning

Synthesize Butanediol to combine purified Telluric Acid in scintillator.

Telluric Acid Purification Plant Commissioning

![](_page_21_Picture_4.jpeg)

Purify Telluric Acid in pH and temperature based reaction.

![](_page_21_Picture_6.jpeg)

![](_page_21_Picture_7.jpeg)

#### **Ovββ decay of <sup>130</sup>Te in SNO+** Cosmogenic <sup>8</sup>B v ES 2νββ $0\nu\beta\beta$ (100 meV) 2νββ (**a**, n) α, n) U chain External y Th chain External Internal U chain <sup>8</sup>B vES Internal Th chain Cosmogenic ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ] Counts/Year: 9.47 5 years of initial loading Fiducial Radius: 3.3m 2.9 0vββ decay half-life sensitivity: 2.3 2.42.5 2.82.6 2.7Reconstructed Energy (MeV) $T_{1/2}^{0\nu} > 2.1 \times 10^{26} \text{yr} (90\% \text{C.L.})$

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)

- 5 tonnes liquid Xenon, enriched in <sup>136</sup>Xe to 90% isotopic purity
- Pending selection but US
   DOE of 0vββ detector
   technology and site

. ... . . ... .. ... .. ... .. ... ... ... .. ...

 SNOLAB's Cryopit is nEXO's preferred site

![](_page_24_Picture_4.jpeg)

![](_page_24_Figure_5.jpeg)

arXiv:1805.11142

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

#### nEXO Detector

![](_page_25_Figure_1.jpeg)

- Single Drift Volume
- ASIC Electronics in LXe
- Charge Collection Tiles on Anode
- VUV SiPMs on Staves
- Copper Field Shaping
   Rings

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)

arXiv:1805.11142

![](_page_25_Picture_10.jpeg)

![](_page_25_Picture_11.jpeg)

#### **nEXO Detector**

![](_page_26_Picture_1.jpeg)

- TPC is housed inner cryostat filled with refrigerant Enclosed in outer vacuum
- cryostat

.. ... ... ... .. ... .. .... .. ....

Suspended in instrumented active veto Outer Detector

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_9.jpeg)

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)

## **Energy Resolution in nEXO**

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_4.jpeg)

![](_page_28_Figure_0.jpeg)

- Energy spectra for SS and MS events as a function of the LXe mass. Spectra are evaluated for a detector live time of 10 years.
- The  $0\nu\beta\beta$  signal corresponds to a half-life of  $5.7 \times 10^{27}$  years.

nEXO Median sensitivity at 90% CL and  $3\sigma$  discovery potential as a function of the experiment livetime

![](_page_28_Picture_4.jpeg)

90% C.L. exclusion sensitivity reach to the effective Majorana neutrino mass  $\langle m_{BB} \rangle$  as a function of the lightest neutrino mass for normal and inverted neutrino mass hierarchies.

![](_page_28_Picture_6.jpeg)

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

![](_page_28_Figure_9.jpeg)

![](_page_28_Picture_10.jpeg)

![](_page_28_Picture_11.jpeg)

## Summary

![](_page_29_Picture_1.jpeg)

### **Ovßß Decay Experiment Sensitivities**

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

Agostini, Benato, Detwiler, PRD 96 (2017) 053001; and A. Caldwell et al., PRD 96 (2017) 073001

![](_page_30_Picture_6.jpeg)

![](_page_30_Picture_7.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

- **U National Autonoma de Mexico**
- LIP Lisbon & Coimbra
- **Lancaster U, U of Liverpool,**
- King's College London, U of Oxford, Queen Mary U of London, U of Sussex
- UCBerkeley/LBNL, Boston U,

**Brookhaven National Lab**, UChicago, UCDavis, Norwich U, U of Pennsylvania

![](_page_31_Picture_10.jpeg)

![](_page_31_Picture_11.jpeg)

![](_page_31_Picture_12.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_32_Picture_4.jpeg)

.......

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_33_Picture_0.jpeg)

### **Mass Hierarchy**

- The oscillation experiments can only measure  $\Delta m^2$ . ٠  $P_{lpha 
  ightarrow eta, lpha 
  eq eta} = \sin^2(2 heta) \sin^2igg(rac{\Delta m^2 L}{4E}igg)$
- Up to now, we have only Text determined the sign of  $\delta m_{21}^2$ . Thus, we don't know the ranking of  $m_3$  relative to  $m_{1,2}$

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$
$$m_{\beta\beta} = \left| \sum_{i=1,2,3} e^{i\xi_i} |U_{ei}^2| m_i \right|$$

![](_page_34_Picture_4.jpeg)

![](_page_34_Figure_5.jpeg)

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

#### Oscillation $v_{\alpha}$ is a neutrino with definite flavor $\alpha = e, \mu, \tau$

 $|v_i\rangle$  is a neutrino with definite mass  $m_i$ , i = 1, 2, 3

$$\left|\nu_{i}\right\rangle = \sum_{\alpha} U_{\alpha i} \left|\nu_{\alpha}\right\rangle$$

$$\begin{array}{cccc} U_{\alpha i} = \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Atmospheric, Accelerator θ~45° 

Reactor, Accelerator  $\theta \sim 9^{\circ}$ 

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

$$P_{\alpha \to \beta} = \left| \left\langle \nu_{\beta}(t) | \nu_{\alpha} \right\rangle \right|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2}$$

Solar, Reactor θ~32°

Ονββ

![](_page_35_Picture_13.jpeg)

### What we DO know about Neutrinos

- Fermion: spin 1/2, electrically neutral
- Only experience the weak force, rarely interacting with anything
- They come in three flavors associated with three other fundamental particles
  - electron, muon and tau
- They change, or oscillate, from one type to another
- Most abundant massive particles in the universe, 340/cm<sup>3</sup>

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_10.jpeg)