% TRIUMF

Super-Kamiokande PMTs Characterizations Using Artificial Magnetic Field and Robotic Laser-Equipped Arms

> Vincent Gousy-Leblanc Graduate student at UVIC Supervised by Patrick de Perio, Akira Konaka, Dean Karlen

58th Winter Nuclear & Particle Physics Virtual Conference

February 9 - 12, 2021

University of Victoria

Outline

- Experiment
- Purpose of these measurements
- Results
- Next steps
- Conclusion

<u>Super-Kamiokande</u> experiment

• Goal: Detect neutrino oscillations (Awarded Nobel Prize of 2015) and measure the mixing parameters

Neutrino interaction

(c) 東京大学宇宙線研究所 神岡宇宙素粒子研究施設

Context :What is a PMT

General idea: Detect photons

• Path can be influence by the magnetic field

The magnetic field in Kamioka

- Earth magnetic field (~650mG) is compensated in Super-K
- Older measurements (2013)
 - $\circ \quad Showed \pm 80 \text{ mG in Z}, \pm 100 \text{ mG in Y} \\ and \pm 80 \text{ mG in X}$
- Newer measurements ~
 - Showed ± 100 mG in 3 directions

Does it as an impact ? ->Need to be measured

Figure 1: Distribution of magnitude of the residual magnetic field at different locations in the detector. The left figure shows the magnitude; the right figures show the value along the usual SK coordinate system axes.

The Photosensor Test facility (PTF) at TRIUMF

- 3 pairs of Helmholtz coils (one in each direction)
 - Can control and <u>monitor</u> <u>magnetic field</u>
- 2 optical box (<u>laser</u>, phidget included to measure tilt, rotation angle and magnetic field)
 - Polarizable light
 - Chosen wavelength
- 2D <u>Characterization of PMT</u> (transit time, detection efficiency, gain)
 PMT inside optical box to measure laser intensity
- Angular response and reflection measurements

Goals of PTF

- General idea: Build a semi-empirical model that would predict the magnetic field effect on a PMT
 - Want to find precisely the effect on
 - Transit time
 - Detection efficiency
 - Gain

-> Goal : Implement the magnetic field effect/2D characterization in the SK simulation.

Hypothesis

How does the magnetic field affects:

- Transit time •
 - Incident angle
 - mPMT)

HOTOCATHOD

Measurements : Transit time spread

- Hard to modelize theoretically this change
- As expected local variations

Credit : John Walker and Blair Jamieson worked

Measurements of the detection efficiency

- Y is unaffected by the change of field.
- High intensity region shift

-> More data needed to build a simple empirical model

Credit : John Walker and Blair Jamieson worked

Gain measurements

Gain = multiplication factor for a single photoelectron arriving at dynode.

- Model: sum of Gaussian, parameters:
 - \circ Q :gain of SPE
 - $\circ \sigma_{1:}$ Width of SPE
 - w: Weight of exponential background w
 - $\boldsymbol{\alpha}$: exponential constant
 - μ: avg number of photoelectrons collected
- Only $Q_{l_i} \sigma_{l_i}$, μ allowed to vary.

->Good agreement between fit parameter and data

Gain measurements

- Data fit to straight line.
 - p0 the intercept.
 - pl the slope

• Gain:

- Decreases for increasing Bx.
- Relatively constant for By and Bz.
- Effect similar in air and water.
- Gain higher in air

-> More data needed to build a simple empirical model

Ongoing work

- Hardware upgrade of PTF are done during the relocation
 - Easier to compensate (further from TRIUMF cyclotron)
 - Overall improvements of the stability, precision of the measurements and control of the magnetic field
 - Temperature reading
 - Motion monitoring
 - COMSOL magnetic field simulations
 - Reduce time to compensate the field

Red : QE_SK Pink: QE_SK corrected Green: QE_MN Blue: Temperature reading

Temperature and QE as a function of time

COMSOL simulation of PTF

- Complete simulation of PTF are done
 - Can change the geometry easily for future modifications
 - Full compensation in the 3 directions is done
 Compare measurements vs simulations in PTF

The next steps

- Preparing PTF for characterizing as well the mPMT module
 - Dark rate measurements
 - Gain,transit time, detection efficiency
 - Angular response comparaison
 - Etc.
- Implementing magnetic field correction/ non-uniformity to Geant4
 - Semi-empirical model that uses the PTF data

Conclusion

• Did some measurements of the effect of the magnetic field on the 20inch PMT

- Important effect on the gain and the detection efficiency
- Angular response scan still needs to be done to
 - Get a better idea of the non uniformity
 - Build a better model

• PTF is undergoing hardware upgrades

• Simulation work in Geant4 is in progress

• First test to include the magnetic field in the simulation

Compensating the magnetic field

- Degauss procedure for a series of voltages \bullet
- 3X Obtain relation between the 2 coils for 1 direction \bullet

3-Differential plot

Ex-situ characterization plan for mPMTS

- Hardware upgrade of PTF are done during the relocation
 - Overall improvements of the stability and precision of the measurements and control of the magnetic field (for more details see X)
 - Possibility of doing angular scan

- Goal: characterization of the mPMT response to the magnetic field
 - Dark rate measurements
 - Reflectivity of the material (using 2 gantry scan)
 - o Gain
 - Photon detection efficiency under different magnetic field
 - Timing and charge resolution
 - Include these effect into the detector simulation software

Hypothesis (2)

How does the magnetic field affects:

- Detection efficiency
 - Will depends on temperature (dark noise)
 - Add the dark counts ?
 - Rate of after-pulse affected
 - Incident angle

Hypothesis (2)

How does the magnetic field affects:

• Gain

- Depends on the dynode type (space between each dynodes)
- Orientation of the PMT (more general)

• incident angle

->Results for 20inch PMT

Gain measurements (2)

• Light collected μ shows the same temperature effect as the detection efficiency measurements.

• This effect is decoupled from the other parameters.

Correlation matrix

How the new correction methods works ?

<u>General idea</u> -Minimize the variation of the efficiency locally (in 2D).

Assumption : around one scan point, the variation should be really small

2-We want to minimize a quantity, a metric (will also help compare the method)

Raw data

Fit calculated from metric

[W] 0.7

8._{0.6}

0.5

0.4

0.3

0.2

0.1

X position [m]

0.05

X position [m]

WCTE (water cherenkov test experiment)

IWCD experiment

Cover on/off ratio

- Air vs Water
- Detection efficiency higher (~20%) in water. ullet
- No data for Bz variation in water taken. \bullet
- Systematic variation between measurements in water. ullet

Air | Cover off

Transit time spread (2)

- Similar to the 2.2 ns quoted by Hamamatsu.
 - Hamamatsu do not consider the positional effect.
- Factor ~1.5 greater effect than RTT.
- Agreement between air and water measurements.

Gain measurements(2)

- Data fit to straight line.
 - p0 the intercept.
 - p1 the slope.

• Gain:

- Decreases for increasing Bx.
- Relatively constant for By and Bz.
- Effect similar in air and water.
- Gain higher in air.
- Gain-width σ_1 :
 - Decreasing for increasing By.
 - Relatively constant for increasing Bx and Bz.
 - Close agreement between water and air.

