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Overview: IWCD

• Currently: T2K neutrino beam produced at J-PARC in Tokai, Japan and measured by Super-Kamiokande in 
Kamioka. 

• Hyper-Kamiokande: next generation WC detector, to be far detector for upgraded J-PARC beam. Order of 
magnitude larger fiducial mass, order of magnitude more events

• Intermediate Water Cherenkov Detector: proposed near detector at Tokai (1-2km from J-PARC) for Hyper-
Kamiokande. Goal, reduce systematic uncertainties:

▪ Reduce flux uncertainty 
▪ By spanning off-axis angles 1 to 4 degrees, constrains relationship between observed lepton 

kinematics and incident neutrino energy.
Introduction



Neutrino detection in  
Water Cerenkov Detectors

electron muon

cosθ𝐶 =
1

β ∗ 𝑛

e or μ

Illuminated PMTs
In Blue

• Neutrino interaction produces a charged particle

• Cerenkov light (EM version of sonic boom) when 
charged particle moves > speed of light in water

• Cone of blue light at angle related to v/c and material 
index of refraction

Introduction



• Data generated using WCSim software for IWCD geometry

• ~2 million events (half neutron capture, half background). For each event, up to 250 hit PMTs. For each hit 

PMT, 8 feature values: charge, time, 3D PMT position (x, y, z) and 3D PMT orientation (x, y, z).

• Simulations include 0.1% Gadolinium doping in simulated water (eq. to 0.2% Gd sulphate) 

- Gadolinium doping: 8MeV gammas, higher neutron capture cross section than hydrogen nuclei      

(2.2MeV gammas, smaller ncapture cross section)

- about 88% of neutrons will capture on Gadolinium, remainder capture on hydrogen

• background source: electron energy distribution
• uniform energy distribution from 0 to 20 MeV, events distributed uniformly in tank

• Background electron rings look similar to neutron capture rings. Let’s see that…

Dataset

Introduction



Introduction

Task: (using ML), can we improve the differentiation of 
Neutron captures from radioactive background electrons? 

IWCD geometry mapped to 2d event display. Shows charge over PMT modules



Purpose: non-ML baseline. Good separation from number of hits, charge sums alone
Likelihood test: fit nhits, charges distributions with smoothed KDEs, classify event based on highest probability

Statistical Baseline:

~79% 

Likelihood Analysis

Likelihood Analysis



MLP/GBM
Multi-Layer Perceptron (MLP)

• “Standard Neural Network”
• Series of layers with various numbers of 

compute units (“neurons”), each receiving 
input from previous layer, computing output

• Loss computed at output layer, backpropagated 
back through network, weights adjusted using 
optimization algorithm

Gradient Boosting Machines (GBM)

• Ensemble method: final model constructed 
iteratively based on many individual models 
(weak learners). Idea: combination of weak 
models in an ensemble leads to improved 
result

• Decision trees are most common type of weak 
model in gradient boosting machines

• Gradient used to minimize loss function
• XGBoost & LightGBM are two popular GBM 

methods
• XGBoost looks at individual features and 

makes branching decisions based on what 
yields the highest information gain

ML Methods



MLP/GBM

MLP training progression

ML Methods

• Performance best with all features 
• Both methods: close to 1% accuracy improvement over 

likelihood baseline
• Difficult to improve from baseline performance!
• Both models find it more difficult to detect background

Original features (charge, time, 
PMT position, PMT orientation)

• Adam optimizer
• 50 epochs
• Learning rate = 0.01
• 5 layers (8 -> 64 -> 128 -> 64 ->12 -> 2) 

XGBoost sample tree



Feature Engineering

Largely inspired by:
• Abe, K., Haga, Y., Hayato, Y., Ikeda, et al. (2013). Neutron Tagging following Atmospheric Neutrino Events in a 

Water Cherenkov Detector. Prog. Theor. Exp. Phys. PTEP (and similar studies)

What separability is there in the dataset?

• Different number of hits and charge 

• Isotropy: Different amounts of scattering and reflections

• Time of Flight: longer time due to neutron gamma pair production at 180°

• Different average distance between hits in an event?

• Average angle between event vertex and sum of hit PMT positions?

• Background clustering? Distance from detector wall?

Try engineering features more informative for a network to learn from

ML Methods



Feature Description

Nhits Number of hits per event

Charge Sum Sum of charges in an event

DWall Distance from event vertex to wall

β1 – β5 Measure of event isotropy. Computes angles 
between all pairs of hits in event. 0 = isotropic, 
higher numbers -> anisotropic

Opening Angle (μ) vector sum of angles between event vertex and 
hit position for every hit in the event

Hit Dist (μ)* Mean average distance between consecutive 
hits in an event

Flight Time (RMS) RMS of time of flight per event

Flight Time (μ) Mean time of flight per event

RMS Consecutive Angle RMS of angles between consecutive hits in event
ML Methods

Engineered Features

* new



Feature Engineering: Aggregate Features
MLP

(all features)

Test accuracy 83.7

Best Dev Accuracy 83.8

ROC AUC (test dataset) 0.915

• Activation function: ReLU
• Classifier: SoftMax
• Layers/Units: 12 -> 36 -> 64 -> 64 -> 24 -> 

10 -> 2
• epochs 500
• lr 0.003 (no lr decay)
• Batch size: 512

ML Methods



Graph Networks

Can model particle event as a graph:
• Nodes -> hit PMTs
• Edges -> connections between nodes

Can be used for:
• node classification
• Graph classification (apply pooling

layer at output) – this is our case

GCN (Graph Convolution Network) example:
• Step 1: Each node aggregates neighbourhood 

feature representations (‘smoothing step’)
• Step 2: Each node updates activations, passing 

through MLP network layer
• Rinse and repeat

Graph Networks



Graph Networks: Models (fully connected)
AGNN GCN SG

Test accuracy 79.7 79.5 79.5

Best Validation Accuracy 79.9 79.7 79.8

ROC AUC (test dataset) 0.855 0.851 0.853

Graph models (Dataset 1):

AGNNConv: Attention-based Graph Neural Network for Semi-supervised Learning 
https://arxiv.org/abs/1803.03735

GCNConv: SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
https://arxiv.org/pdf/1609.02907.pdf

SGConv: Simplifying Graph Convolutional Networks 
https://arxiv.org/pdf/1902.07153.pdf

Graph Networks

https://arxiv.org/abs/1803.03735
https://arxiv.org/pdf/1609.02907.pdf
https://arxiv.org/pdf/1902.07153.pdf


Graph Networks: Graph Construction Methods

Test accuracy 79.7

Best Validation Accuracy 79.9

ROC AUC (test dataset) 0.863

K = 5 K = 15 K = 19 K = 23 K = 100

Test accuracy 78.2 77.0 78.4 73.4 77.3

ROC AUC 0.842 0.833 0.846 0.784 0.836

GCN (fully connected, distance weighted)

GCN (k nearest neighbours graph)

Graph Networks



Synopsis

Overall Next Steps

• Model Saturation
Comparison to human-level 

performance

• Feature Engineering

• Graph Networks

• “Dark Noise” 
application

• Super Kamiokande 
data

• Comparison to other 
architectures

• Other Physics



Thank you

Any questions?
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Gadolinium Loading 

Vagins, M., Ishino, H., & Collaboration, S. K. (2012). GADZOOKS!. Phys. 
Rev. Lett, 108, 052505.

Neutrons produced through inverse beta 
decay

Advantages of Gadolinium:

• Much higher neutron capture cross-section
• Higher energy gamma rays (8MeV > 2.2MeV)
• More neutrons detectable

• Neutrons scatter in water until they reach low enough 

(“thermal”) energy. Then captured by nucleus, which 

becomes excited. Nucleus de-excites by producing 

gamma rays which produce electrons. 

Introduction



Neutron Tagging

1) Distinguishing neutrino/antineutrino events

2) Diffuse supernova neutrino background (DSNB)
• open window at low energy (0-30MeV) 
*Less applicable for IWCD, more a far detector task Sekiya, H. (2017, April). The Super-Kamiokande 

Gadolinium Project. In 38th International Conference 
on High Energy Physics (Vol. 282, p. 982). SISSA 
Medialab.

Introduction



Dark Noise Dataset (IWCD)



Dark Noise Dataset (IWCD)


