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Messengers for dark matter
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Direct detection: DM is its own
messenger (PICO, DEAP-3600 at

SNOLAB

Indirect detection: DM annihilates in
galaxy, we see decay products
(gamma rays: VERITAS; X-rays:
21-cm surveys—CHIME)

Even more indirect: DM self-scatters,
changes its halo properties in
galaxies (optical, rotation curves, sky
surveys)
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Direct detection limits

So far the message from direct searches is nothing yet!
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Cosmic ray anomalies

Indirect searches may be seeing something,
GC excess / stat, E = 1.1-6.5 GeV

Fermi-LAT observes excess ~GeV
~v-rays from the galactic center
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DM annihilation to bb

Cholis, Linden & Hooper find compatible parameters for both
excesses from xxy — bb (1903.02549)
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They also claim strong significance for the p excess, 4.7 ¢.

Likelihood of other final states is less, uu, dd — 3.3 o,
WTW~- — 3.60.
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The GC ~-ray excess and pulsars

Researchers vigorously debate DM versus millisecond pulsars
(MSPs) as origin of the v-ray excess.

Population of unresolved MSPs seemed a good astrophysical
candidate.

pro-MSP: anti-MSP:
Mirabal,1309.3428 Hooper et al., 1305.0830
Calore et al., 1406.2706 Cholis et al., 1407.5625
O'Leary et al., 504.02477 Haggard et al., 1701.02726

Bartels et al., 1805.11097
Statistics of v-rays argued to favor MSPs over DM.
Bartels et al., 1506.05104
Lee et al., 1506.05124

Recently Leane & Slatyer (1904.08430) dispute that claim, favoring
DM. Encouragement to pursue DM explanations!
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The Higgs portal
Scalar DM generically couples to Higgs,
IAnsX°h® = $Ansv X7h

A nice answer to the question “why bb?” Higgs couples most
strongly to b (assuming m, < my).
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There are strong constraints from direct detection,
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that can be evaded by being close to the Higgs resonance,
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Singlet scalar DM global fits
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JC, Kainulainen, Scott, Weniger 1306.4710 GAMBIT collaboration, 1705.07931

Region from 55 GeV to my /2 = 62.5 GeV is not ruled out.

But the indirect detection cross section is highly suppressed in this
region!
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Suppression of ov In galaxy

Thermal average of ov for yx — bb during freezeout of DM in early
universe can probe resonance when m, < my,/2:

const.
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Present-day annihilations in galaxy have v <« 1,

(0V) gal 2 C;)ﬂ;t- 2
(4mi —mg)* + (Upmy)
N The ratio (ov)ga1 /(00)¢.0. IS
] highly suppressed for
’ L my, < mp/2.

We need itto be ~ 11to
explain the cosmic ray
excesses.
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Pseudo-Nambu-Goldstone Boson DM

JC & Takashi Toma, arxiv:1906.02175

PNGB DM can reconcile m,, > my /2 with direct detection
constraints.

Let DM be imaginary part of a complex scalar field, S = (s +ix)/v2
with softly- (and spontaneously) broken global U(1) symmetry:

A v? > m? )
V= 75 (\512 - 7) + = (97 4+ 57) + Aus|HI?|S|?

The pNGB gets mass m,, but its couplings to matter vanish as
momentum transfer — 0, no direct detection signal

We can take m, > my,/2 to get large enough yx — bb annihilation
Cross section

J.Cline, McGill U. — p. 10



Complex scalar potential

As v2\* | m .
V—7(\Sy2—7> +TX(S2+S2)

looks qualitatively like

-2

Bottom of potential is a distorted wine bottle
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Suppression of direct detection signal

When S gets VEV, Higgs portal causes mixing between h and s,

h\ ([ co so\ (M
s)  \—sy cp ho
The two diagrams interfere destructively, vanishing as ¢t — 0:

The two diagrams cancel to O(q?/m3)

hl h2
’ for low momentum transfer g
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Cancellation is ineffective in s-channel, leaving indirect signal,
A b

Momentum transfer is large, ¢ ~ m,, no
.- hy,h, cancellation
X b

since s & 4m>2< is not small
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Working models

Purple curve gets DM relic density right.
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We can explain cosmic ray excesses for m, = (64 — 67) GeV.
Mass of extra Higgs boson my, not strongly constrained.

lllustration of direct/indirect complementarity for guiding the search
for models A.Cine, McGill U —p. 13



DM self-interactions?

Bullet Cluster demonstrates noninteracting nature of DM,
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Hints of DM self-interactions

Bullet cluster can tolerate a certain level of DM self-interactions,
Randall et al., (0704.0261),

2 <0.7b/GeV
m
(recall 1 b = 107%* cm?).

A similar limit arises from cosmological simulations of galaxy
structure (Rocha et al.,, 1208.3025 & 1208.3026)

Saturating this limit could solve claimed problems for DM: cuspy
versus cored halos, lack of large satelllite galaxies predicted by
simulations (Weinberg et al., 1306.0913)

Note that 1 b > 10~%%cm? | (Direct detection limit)

J.Cline, McGill U. — p. 15



Self vs. nuclear interactions

DM self-interactions need not be related to interactions with nuclei,
but sometimes they are.

Example: (JC, M. Puel, T. Toma) ~ 0.3 GeV mass sterile v DM.

DM——---------- S
We need a light scalar s so DM can annihilate

DM g~ S
DM % DM

Then s exchange leads to self-interactions
DM : DM

g

g
DM : DM [] ] ] (] []

But s must mix with Higgs so it can decay: it

N i . Mmediates nuclear interactions. (6 = mixing angle)

0

Not simple to reconcile since 6 cannot be too small ...

J.Cline, McGill U. — p. 16
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Conclusions

Dark matter is strongly constrained by direct and indirect searches

Indirect searches give hints of DM annihilation and DM
self-interactions in the galaxy

Fitting everything together into an appealing model can be
challenging

Perhaps we are close to a real direct detection, and not just
iImproved limits!

J.Cline, McGill U. —p. 18
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