# New HALO-1kT

And supernova neutrino flux reconstruction

Andrea Gallo Rosso, Laurentian University 30<sup>th</sup> January 2020

# PRESS Start

#### WHAT WE KNOW (FOR SURE)

- $\cdot\,\sim 10^{53}\,\text{erg}$  gravitational B.E.
- 99% in neutrinos
  - $\hookrightarrow \, \nu_{\rm e} \, \nu_{\mu} \, \nu_{\tau} \, \overline{\nu}_{\rm e} \, \overline{\nu}_{\mu} \, \overline{\nu}_{\tau}$
- $\cdot$  ~ 10 s signal



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).

#### Phases of a SN explosion

- 1. Instability & collapse
- 2. Bounce
- 3. Shock propagation
- 4. Shock stallation
- 5. Accretion & cooling



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).

#### Phases of a SN explosion

- 1. Instability & collapse
- 2. Bounce
- 3. Shock propagation
- 4. Shock stallation
- 5. Accretion & cooling



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).

#### Phases of a SN explosion

- 1. Instability & collapse
- 2. Bounce
- 3. Shock propagation
- 4. Shock stallation
- 5. Accretion & cooling



<sup>&</sup>lt;sup>1</sup>Images adapted from Janka *et al*. Phys.Rept. 442 (2007).

# Describing a supernova

#### FUNDAMENTAL PHYSICS

- General relativity
- Equation of state
- In-medium neutrino mixing effects

#### MULTIDIMENSIONAL EFFECTS

- $\cdot$  Convection
- Turbulence
- Standing Accretion Shock Instability (SASI)
- Lepton-Emission Self-sustained Asymmetry (LESA)

# Learning from supernovae

#### ASTROPHYSICS

- Explosion mechanism
- Black hole formation
- Neutron star EoS
- Microphysics and neutrino transport
- Nucleosynthesis

#### PARTICLE PHYSICS

- Neutrino flavor transformation in dense environments
- Non-standard properties (indirect)

#### EXPERIMENT

- Down-time of current kt-scale detectors
  - $\,\hookrightarrow\,$  calibration, reconfiguration, end of life...
- Cost of big detectors (100 kton)
  - $\hookrightarrow$  some features might be sacrificed

NEED FOR LOW-COST, LOW-MAINTENANCE, LONG LIFETIME DETECTORS

#### THEORY

- + SNEWS is dominated by  $\overline{\nu}_{\rm e}$  sensitive detectors
- Importance of combining channels

#### NEED FOR A ORTHOGONAL SOURCE OF INFORMATION

# Lead as supernova detector

#### Lead as supernova detector

- $\cdot \nu_{\rm e}$  sensitive
  - + Pauli-blocking of  $\overline{\nu}_{\rm e}$  CC
  - Complementary to protons IBD:  $\overline{\nu}_{e} + p \rightarrow e^{+} + n$
- Neutron production
  - High Coulomb barrier  $\Rightarrow$  no ( $\alpha$ , n)
  - Low neutron absorption
- CC electrons
  - Spectral information
  - Very difficult to detect



<sup>208</sup>Pb  $(v_e,e^-)^{207}$ Bi +n <sup>208</sup>Pb  $(v_x,v_x)^{207}$ Pb +n <sup>208</sup>Pb  $(\overline{v}_x,\overline{v}_x)^{207}$ Pb +n <sup>208</sup>Pb  $(\overline{v}_e,\overline{v}_x)^{207}$ Pb +n <sup>208</sup>Pb  $(v_e,e^-)^{206}$ Bi +2n <sup>208</sup>Pb  $(v_x,v_x)^{206}$ Pb +2n <sup>208</sup>Pb  $(\overline{v}_x,\overline{v}_x)^{206}$ Pb +2n

# Accessible measurements

1n thresholds

• 2n thresholds



<sup>1</sup>A. Gallo Rosso et al. JCAP 1812 (2018), JCAP 1804 (2018), JCAP 1711 (2017).

# the Helium And Lead Observatory at SNOLAB



#### the Helium And Lead Observatory at SNOLAB

- 32 columns of lead (79 ton)
- 128 SNO's NCD counters
  - $\cdot$  1465 l atm of <sup>3</sup>He
  - $\cdot$  <sup>3</sup>He + n  $\rightarrow$  p + t + 764 keV
- Operating since May 2012
- High livetime, low maintenance



#### Next generation HALO-1kt at LNGS

- $\cdot$  Lead from OPERA
  - ×12.7 mass w.r.t. HALO
- Improved efficiency
  - + from 28% to  $\sim 50\%$
- $\cdot$   $\times 20$  more statistics



# Neutrino flux reconstruction

#### Quasi-thermal fluxes



#### Quasi-thermal fluxes



# Likelihood analyses

- $\mathcal{E}_{tot} = 3 \times 10^{53} \text{ erg}}$  (D) D = 10 kpc
- $\cdot$  Oscillations: MSW effect (NH)
  - $\cdot \ F_{\overline{e}} = \overline{P}_{ee}F^0_{\overline{e}} + (1 \overline{P}_{ee})F^0_x$
- Likelihood analysis
  - $\hookrightarrow$  Emission parameters



# Likelihood analyses

#### WATER CHERENKOV DETECTORS

- Super/Hyper -Kamiokande
  - 22.5 kton/0.37 Mton
- Channels
  - \* IBD:  $\overline{\nu}_{e} + p \rightarrow e^{+} + n$
  - eES:  $\nu + e^- \rightarrow \nu + e^-$
- 100% efficiency and tagging
- 5 MeV threshold



A. Gallo Rosso et al. JCAP 1812 (2018), JCAP 1804 (2018), JCAP 1711 (2017).

# The importance of combining channels



1 channel (IBD)

#### WATER CHERENKOV ALONE

- IBD only: flux degeneracies
- Breaking through eES

A. Gallo Rosso et al. JCAP 1812 (2018), JCAP 1804 (2018), JCAP 1711 (2017).

# The importance of combining channels



2 channels (IBD + eES)

#### WATER CHERENKOV ALONE

- IBD only: flux degeneracies
- Breaking through eES

A. Gallo Rosso et al. JCAP 1812 (2018), JCAP 1804 (2018), JCAP 1711 (2017).

- LS220-s27.0co<sup>[2]</sup>
- HALO-1kT & Super-Kamiokande
- Likelihood analysis
  - $\hookrightarrow$  **Detected** parameters

<sup>&</sup>lt;sup>2</sup>A. Mirizzi et al, Riv. Nuovo Cim. 39 (2016).

# **Detected fluxes**



# **Detected fluxes**



# **Detected fluxes**



#### NEXT SUPERNOVA

- Once in a lifetime event: be ready!
- $\cdot\,$  (Hopefully) surprises: getting the most of it is mandatory

#### HALO-1KT

- Stable, low maintenance, high livetime, long lifetime
- $\cdot \nu_{e}$  sensitive detector  $\Rightarrow$  complementary information
- HALO-1kT proposal will be submitted LNGS scientific committee