Hunting High-Energy Counterparts to Gravitational Wave Events with Swift Trying to Solveing the 'first few hours'

physics gap for compact binary mergers

Aaron Tohuvavohu University of Toronto

Rodriguez + Metzger (2016

Need for earlier Obs. ---importance of UV

- radioactive decay luminosity model from Villar et al. (2017)
- combined shock cooling - boosted radioactive decay model from Kasliwal et al. (2017).

single-component radioactive decay luminosity model from Waxman et al. (2017)

shock cooling model from Piro & Kollmeier (2017).

From Arcavi 2018

Most complete total coverage for NSBH \$190814bv

Probability covered as a function of time for S190814bv:

GW Treasure Map (Wyatt, AT, et al. 2020)

How do we solve this problem? (without waiting 5-10 years)

1. Localize to within the FoV of narrow-field sensitive telescopes (HST, Chandra, Keck, VLT) from the prompt emission alone!

What how?

- Do very early time wide-field searches in X-ray and UV
 What how?
- 3. Coordinate between search groups.

What how?

The Neil Gehrels *Swift* Observatory $(2004-\infty)$

Instrumentation

- Burst Alert Telescope (BAT)
 - Hard X-rays (15-350 keV)
 - 1/6 of the whole sky (~2 sr.) FoV
 - Localizes ~100 GRB/yr.
 - Arc-minute localization
- X-ray Telescope (XRT)
 - Soft x-rays (0.3-10 keV)
 - 0.12 sq-degree FOV
 - Arc-second localization
 - CCD spectroscopy
- UV/Optical Telescope (UVOT)
 - 170-650 nm
 - 0.08 sq-degree FOV
 - Sub arc-second positions
 - Grism spectroscopy
 - 24th magnitude sensitivity

Swift Localization Sequence

 $< 2 \, \mathrm{arcsec}$

<4 arcmin

~0.5 arcsec

BAT FoV at GW170817 T0

Amy Lien

GW170817

(in an alternate universe shifted temporally by 29 minutes)

- Light curve shape of GRB 170817A is modeled by fitting.
 - Best fit spectral models (Goldstein et al. 2018) are used for the 1st peak and the 2nd peak.
 - Using the background data of GRB 170516A.
 - 30 degree off-boresight energy response is used.
 - Simulated the counts in the BAT standard 80 channels every 100 ms.

23 sigma detection!!!

Sim by Taka Sakamoto

GW170817

(in an alternate universe shifted temporally by 29 minutes)

Counts/100 ms

- response is used.
- Simulated the counts in the BAT standard 80 channels every 100 ms.

Sim by Taka Sakamoto

Just Lamenting? Nope, we can optimize for this outcome

Network Antenna Pattern for LIGO

Chasing the LIGO lobes across the sky: Increasing the Coincident GW/GRB yield with Swift/BAT biasing (AT 2020, in prep)

Maximum Likelihood Approach

Define full Poisson likelihood for expected counts in each individual detector from bkg. Plus signal model, as a function of energy $L = \Pi_{ii} p_{ii}$

Where i iterates of detectors and j iterates over energy bins

 $\mathbf{p}_{ij} = \mathbf{Poisson}(\mathbf{n}_{ij}; \boldsymbol{\theta}_{ij}) = \boldsymbol{\theta}_{ij}^{\mathbf{n}_{ij} \mathbf{i}} \exp[-\boldsymbol{\theta}_{ij}] / \mathbf{n}_{ij}!$

Where n_{ii} is the observed counts in detector i and energy bin j

And θ_{ii} is the expected number of counts from the model being tested

θ_{ij} = N_signal_{ij} + N_bkg_{ij}
 N_signal_{ij} = S(A₀,γ,ra,dec) × (A_eff_j □ f_i)
 Where f_i is the fraction of the detector that the source illuminates
 N_bkg_{ij} for now is taken from nearby off-time data.
 J. Delaunay, AT, et al (in prep)

BAT Max Likelihood Evaluation

H₀: Bkg and S=0 H₁: Bkg and S(A₀, γ ,ra,dec) P(data | H₁) \propto L(S, Bkg | data) P(S) P(Bkg) P(data | H₀) \propto L(Bkg | data) P(Bkg)

P(Bkg) is a gaussian with mode and uncertainty found from a fit to nearby off-time data

Test Statistic:

 $\underline{\Lambda = 2^* \log[P(data|H_1) / P(data|H_0)]}$

J. Delaunay, AT, et al (in prep)

Example of targeted MaxLogLikelihood Around GRB 180805A

Max SNR = 12.56

Max \sqrt{TS} = 25.86

Gamma-ray Urgent Archiver for Novel Opportunities (GUANO):

Swift/BAT dumps on demand to enable sensitive sub-threshold GRB searches (AT, Palmer, Cenko 2020, in prep)

 Autonomously commanding spacecraft in extremely low latency to save temporally coincident event level data

• First ever autonomous commanding of a space telescope for scientific purposes

Sets the stage for automatic repoint
 -shhhhhhh

Joint LVC/BAT sub-threshold search

- MoU signed with LVC : Swift receiving all GW triggers with FAR < 2/day.
- Autonomously commanding spacecraft in extremely low latency to save temporally coincident event level data (GUANO pipeline: AT, Palmer, Cenko 2020, in prep)
- Running sub-threshold maximum likelihood search to look for counterpart.
- GW/GRB coincidences found with joint FAR << 1/month will be reported publicly
- Extends range for GRB 170817 analogue to >120 Mpc, significantly farther for more luminous events.

Example for above threshold BBH S190503bf

BAT Fov at TO

How do we solve this problem? (without waiting 5-10 years)

1. Localize to within the FoV of narrow-field sensitive telescopes (HST, Chandra, Keck, VLT) from the prompt emission alone!

What how?

- Do very early time wide-field searches in X-ray and UV
 What how?
- 3. Coordinate between search groups.

What how?

S190425z

S190426c

S190728q/IC-190728A

S190814bv

Name	Classification	Distance (Mpc)	Raw (glxy conv.) prob covered in XRT/UV	BAT prompt coverage
S190425z	BNS: (99.9%)	156 +/- 41	1 (6.5) %	10 %
S190426c	BNS: (49.3%) Mass Gap: (23.7%) Terrestrial: (14.0%) NSBH: (12.9%)	377 +/- 100	18 (31) %	10 %
S190510g	Terrestrial: (58.0%) BNS: (42.0%)	227 +/- 92	59 (67) %	0 %
S190718y	Terrestrial: (97.9%) BNS: (2.1%)	227 +/- 165	17 (22) %	15 %
S190728q	BBH: (95.4%) Mass Gap: (4.6%)	874 +/- 171	0.6 (95) % *nu	74 %
S190814bv	NSBH: (99.8%)	267 +/- 52	82 (90) %	100 %
S190930t	NSBH: (74.3%) Terrestrial: (25.7%)	108 +/- 38	0.5 (3) %	11 %
S191110af	Burst retracted	NA	0.07 (25) %	12 %
S191216ap	BBH: (99.1%)	376 +/- 70	2 (3) %, ~99% nu/ɣ	3 %
S200114f	Burst (low freq)	NA	30 (NA) %	>99.8%
S200115j	Mass Gap (with p_ns =1,	340 +/- 79	5 (10) %	8 %

Plenty of 'new' UVOT/XRT sources being found. Often suffer from lack of template images at sufficient depth in UV and X-ray bands to confidently identify transients.

Swift J224718-581442 (AT2019sbk) Very Fast UV transient, gone at T0+2 days (perhaps similar to SN 2019bkc?)

Swift Gravitational Wave Galaxy Survey

AT, Evans, Kuin, et al. (2020, in prep)

- 5 Million Seconds targeted pre-imaging survey
- >15% of all *Swift* observing time in past year
- 14,251 galaxies
- 4773 individual fields
- 42% of integrated B-band luminosity within 100 Mpc
- X-ray sources to $\sim 4 \times 10^{-13}$ erg cm⁻² s⁻¹
- Complete to 5 sigma at 21 mag in u and uvw1

63% Complete as of Today (29/01/20)

How do we solve this problem? (without waiting 5-10 years)

1. Localize to within the FoV of narrow-field sensitive telescopes (HST, Chandra, Keck, VLT) from the prompt emission alone!

What how?

- Do very early time wide-field searches in X-ray and UV
 What how?
- 3. Coordinate between search groups.

What how?

How to Avoid Unnecessary Overlap in EM Searches?

Typical Scenario:

Everyone observes the highest probability region. Early (or entire) kilonova is missed 🛞

How to Avoid Unnecessary Overlap in EM Searches?

Desired Scenario:

Resources are put to good use to cover more of the probability region.

Early (or entire) kilonova is found! 😳

Updates/new features since last community presentation:

- DOIs and author groups for citing reports
- Tme slider to visualization
- Fermi GBM+LAT automatic coverage map per alert
- Gaining community participation in recent alerts
- Added API tutorial notebooks
- Submitted a paper describing the functionality and inner workings of Treasure Map <u>arXiv:2001.00588</u>
- Added API endpoint for bulk cancellation of scheduled pointings

Participating Instruments so far in O3:

Name Pointings reported Swift/XRT 5464 Swift/UVOT 3715 Sinistro 728 ZTF 207 MMTCam 119 IMACS_f2_square 99 MLS10KCCD-CSS 96										
Name	Pointings reported									
Swift/XRT	5464									
Swift/UVOT	3715									
Sinistro	728									
ZTF	207									
MMTCam	119									
IMACS_f2_square	99									
MLS10KCCD-CSS	96									
CFHT_MegaPrime	65									
Wise observatory C28 Jay Baum Rich telescope	32									
Wise observatory C18 telescope	24									
Swift_BAT	23									
Spectral	3									
Fermi/GBM	62									
Fermi/LAT	62									

What actually happened (Swift perspective)

- First field imaged at T0+16 minutes
- 741 fields in < 40 hours
- 92% of galaxy convolved localization covered
- Only constraints on X-ray and UV transients in the localization region
- Discovered the UV emission

XRT early non-detection: First indication that this was not an on-axis burst

What to expect following a public GW trigger:

- T0 + 25 minutes: Tiling schedule shared publicly via <u>Treasure Map</u>
- T0 + 30 minutes: Swift UVOT/XRT settles on first target, search begins
- T0 + O(hrs): Sub-threshold BAT search results reported via GCN circular.
- T0 + O(hr) O(day): XRT counterpart candidates reported automatically via GCN <u>notice</u>.
- T0 + O(hrs) O(days): Human vetted UVOT/XRT counterpart candidates reported via GCN <u>circular</u>.

Throughout: Rapid X-ray + UV follow-up of promising candidates detected by other instruments.

<u>Submit a ToO</u>

Swift/UVOT detection of UV bright kilonova

- Swift UV image at T0+15 hours
- Only UV measurement of the kilonova
- UV photometry a critical contribution to kilonova emission modeling

Recovering an off-axis afterglow with XRT?

= power-law slope varied, Red = circumburst density varied, Green = E_iso varied

D. M. Palmer

Comparison of MaxLLH vs standard BAT tools For the near-threshold short GRB 180805A

J. Delaunay, AT

Illustrative Rates Estimate

- Assuming $D_{BNS} \le 120$ Mpc for above-threshold range and BNS rate of 1000 Gpc⁻³ yr⁻¹, anticipate ~26 BNS events in the sub-threshold regime (120 Mpc < $D_{BNS} \le 200$ Mpc, with $3\sigma \le S \le 5\sigma$). With an (uncorrelated) 70% duty cycle for each detector, this gives 23.5 sub-threshold BNS events + ~3 above-threshold single-detector BNS events per year.
- Duty-cycle averaged sky coverage of BAT (for localization) is 15%, and for detection alone (lower sensitivity) is ~60%. This implies data allowing for few-arcmin localization of >4 sub-threshold and single-detector events per year during O3.
- GW170817 detectable to 120 Mpc, ~median γ-ray luminosity events detectable to 170 Mpc, brightest (on-axis) γ-ray events detectable to far beyond GW sub-threshold range.

Conservatively anticipate recovery (w/ few-arcmin localization) of a BAT counterpart for ~2-3 of every 5 real sub-threshold BNS occurring within active BAT FoV during O3b.

Burst Alert Telescope

(magic with shadows)

Data (cts/det)

									`				/				
		10		STA		24	14/2	1.64		121	330.0	U/ 16	A.S.		4.3	2.1	34
	160	10	100	6.47	NACK N	Ğ		34	2400	2	153	21015	SZA.	1	12.30	er v	W.
		HERE				ت نگ	HALL	14	11	ii.	1 14	540	153	100	3.0	180	in
	140	1.55		LINE	A.C	1.1	035	183	100	307	\mathbb{R}^{2}	2004	347	1.1	100	4.4	0.25
	120	н <u>к</u> , 9		18	42	4	育堂		-	133		1 11	I COR	54E	'Z.i	震向袭	1649
	120	2.4		¥ 52	1.1		0		16		-Q.			C .%	100	Mar	100
	100		Ħ	8	475		58 3		4.5	2	173	1.1	217	240	Ø 🖓	150	241.
	100	12-6	5.8	開設	196		10A	1 4	8868		19 N		122	HY C	124	<u>ور ال</u>	3-20
2	80	-	S	423	P STATE	勤养		122	100	20.0				*7	132		_
		150		EC	17.	1.2	133		464	1624	172	3.0	IC.	, 1 U	the second		
	60	Service Service	1.0	144	NT-	100		新	-	DE CAN		KHA	123	Witter			
		SE R	17	開設	10.	5.2	63 8	1.5	•	25	: 270	병원	123	SMA	(出生)		
	40	1725	6.80	WE 2	11	19		122		E 24		12.5	(hộn)	193	252		
	20	1.96	D/A		140	31		175	D.C	217		20	140	15	12		
	20	配い			i de la composition de la comp	No. R	8-#	20	3 %	B NA	1.15	-uk	10.35	222	- 62		
	0	8 6 4		207	1452		100		12	1	i lla 🔹	H-M	1	122	1		
	Ŭ	ò		5	C		10	С		150		2					

FFT w/ mask pattern

Sky Image

BAT likelihood cont.

 $N_{signal_{ij}} = S(A_0, \gamma, ra, dec) \times (A_{eff_j} \Box f_i)$ $N_{signal_j} = \int dN/dE * DRM(E)_j dE$ $DRM(E)_j = A_{eff}(E) * (Fraction of counts with energy E$ that land in ebin j)

 $N_{signal_{ij}} = N_{signal_{i}} * f_{i} / \Sigma_{i} f_{i}$

$$\begin{split} & L_{ij} = \text{Poiss}(\text{Data}_{ij} \text{ ; Nsig}_{ij} + \text{Nbkg}_{ij}) \\ & \text{Nsig}_{ij} = \text{Nsig}^*(\text{fraction of signal counts in ebin j})^* \text{ f}_i / \sum_i \text{ f}_i \\ & \text{Nbkg}_{ij} = (\text{bkg}_{\text{rate in ebin j}})^* \text{ t}_{\text{binsize } / \text{ ndets}} \\ & P(B_j) = \text{Norm}(\text{bkg}_{\text{rate}_j} \text{ ; } < \text{bkg}_j > \text{ from fits, } \sigma_{j,\text{bkg}}) \\ & \text{Maximize over imx, imy, Nsig, plaw_index, bkg_{\text{rate for each}} \\ & \text{ebin:} \\ & P(\text{data} \mid \text{H}_i) \propto \sum \log(L_{ij}) + \log(P(B_j))a \end{split}$$

		18	9.0		H ()	N.J.P	(25)	不頸	104		8.05	L.	H XX	90	194	6 P.
160 -	1		Ξħ.	NOV.9	Ğ	2	3	000	Ter::			团族	56.03		(#) h	12.50
140	.				1	HER	1.24	和月	ĝ.	3.22	\$15	43	14			
140 -	342 1		5. A	100	er p	CBR	3.63	16M	2013	1994	20		9 45			44
120 -	See 24	ан I	4	433	Ŵ	9842	25.6	433	17 2		26	•	1.5	1		1 20
			747	5	\$ 743			191		4		Det s	1	ESC 1	44	208
100 -	1	40M		1.1		CO.T		2.84		نق في	104	17.2	684		UR.	a ku
	10.4	ABI		私民		32.R	18			-	1.20		3.2	194		1 3 3
80 -				21324	禁注			COLUMN)			100		4.4	1.00		
~ ~	22511	8.9	Et				0.0	FILL	14.4		ATT.		12.	1.1		
60 -	17.48		8.0	NUM	TOT O		782.5		1828	104	A Ref.	120	MIGICI	2,210		-
40 -	225 8		144			122	-		360	21.80	5 mil	1413	940			
40	51.94	er i	Lis	W:1	21.18			11.	BE	V.I.S	tuda	2.9	_	and!		
20 -	A.Bea	60		19.00	19.48	Ba'da			FILL 1	12.44	132	6.99	100	1.1		
	16.475	132	125	2894	172.4		SAL S	0.60	9 54		223	R.34	1 18 4	202		
0 -	2 in		-	133.	6.	-11		144	Rate	R 1	1.11	K .38	i ila		1	
	0		50)		100)		150		2	00		25	0	

	1.00		1.	E P		61 T.J	Ц	152	49	D4		84. ES	1	ł.	90	1.14	
	160 -		÷.,	672	11.0	Ğ		38.9		1011		C.TE	Diff.	SAL J		199 3	25.4
	140 -	.				đ,	HE	10.00	37 13	\$	1.1	34 4	9 3	162			_
	110			474		- h.		3.63	LAR	at Pe	2.3	250		<u>.</u> ,			49
	120 -	1 A 1			4.3	W	ary	24	151	14.5	- 1	7.54	-				
		2.2		140	1 in	100						_	DEX &	2 -	100	14	5-M
	100 -	_	1114	100	12.3		000	CIERC	1.53		100	105	12.	-		C.M.C.	2 34
Ľ,		10	2.8	1	-		9.2.A	118			49	1.46	1.	9. JU	69 H		2.00
ĕ	80 -		a series	특석	-	執法			din.			104 A		4.5	1 5 4 4		_
		a a su a	140	1.5					Sint.	14.3		ALL T	1	124	LL.B		
	60 -	75° 6	1.1	S. IS	N.T.N	R J	10.5	1 51 0 . 3		1921	104	16.6	12.0	1540	2.304		
	40 -	31		1.40		Lari	2.54			382		8 M.	1.3	200			
		1.5	1.	ALLS.	83	21.18	1.0	2		NH.	See.	16. da	1.9	ana i	191		
	20 -	8.P.	144	22	dar.	19.8	100	1 de 1	<u>.</u>	AM2	自由	122	141		R	1	
	20	R.M.	N 44	19	200	R.Y.R		9. 4 .6	1.20	P fid	3.8)	20	統對	; 1 84	30		
	0 -	f.in.			1861	- 63	1	100		11.1	571	11	18.37	<u>, 167</u>		2	
	(Ď		5	0		10	0		150		2	00		25	50	
									De	tХ							

XRT early non-detection: First indication that this was not an on-axis burst

Recovering an off-axis afterglow with XRT?

= power-law slope varied, Red = circumburst density varied, Green = E_iso varied