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Figure 2. Snapshots of the early evolution of the GRMHD model B3d (slice y = 0), with each column corresponding to the time as labeled in the middle
row (the orbital time at the initial density peak is 3.3 ms, or 224rg/c). From top to bottom, rows correspond to electron fraction, neutrino number source
term � (equation 3), temperature, poloidal magnetic pressure, and toroidal magnetic pressure, respectively. The white contours correspond to mass densities
of 106 g cm�3 (outer) and 109 g cm�3 (inner), and some magnetic field lines are shown in gray in the lower two rows. The gray hatched area corresponds to
regions excluded from our analysis for having high magnetization or a density close to the floor value (§2.4).

from Figure 3. This process operates in both GRMHD and hydro-
dynamic models.

The continued decrease in the density eventually causes
weak interactions to drop to dynamically unimportant levels, thus
freezing out Ye. This transformation from a neutrino-cooled disk

(Popham et al. 1999; Chen & Beloborodov 2007) to an advection-
dominated accretion flow (Narayan & Yi 1994) occurs on the an-
gular momentum transport timescale (Beloborodov 2008; Metzger
et al. 2009). This transition can be quantified by the evolution of
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Overview

1. Science questions

2. MM transient theoretical activity in Canada

3. Future directions and opportunities



Time-domain Astronomy

Abbott et al. (2017) [LVC]

- Transient surveys

Motivation:

- GW source follow up

Science:

- origin of elements

- compact object formation

- probes of fundamental physics

- other astrophysics



Transients
1) Galactic CCSNe: - MeV neutrinos (if star not too massive)

- GW (if not too far & stochastic)
- EM (if bright & not too obscured by dust)
- progenitor & remnant (maybe)

Science questions (for Astrophysics):

- explosion mechanism (neutrinos crucial), energy & yield

- progenitor / remnant connection

- EOS of dense matter

- compact object birth properties

- neutrino physics: flavor transformation, exotic species, etc



Core-Collapse Supernovae

Fe core

PNS

PNS

heating
(absorption)

cooling
(emission)

ν

ν

ν

ν

Bounce shock stalls: must be revived for a 
successful explosion.

Neutrino mechanism: absorption of energy in 
a layer inside the shock fills the gap



Transients
1) NS / BH mergers - GW (if not too far)

- EM (if not too far or obscured by dust)

Science questions (for Astrophysics):

- binary stellar evolution

- progenitors of high-energy transients

- nucleosynthesis yield (neutrinos crucial)

- tests of fundamental physics: EOS, Hubble constant, etc.

- MeV neutrinos (unlikely, < 10-2 of SN rate)
- HE neutrinos (maybe, if jet on-axis: sGRB)



Neutron Star Mergers

RF & Metzger (2016)



MM Transient Theory in Canada

1) Perimeter / Waterloo / Guelph:

2) UToronto / CITA: 

Lehner, East: Numerical Relativity, GW

Siegel: GRMHD, merger remnants, outflows

Caballero: Nucleosynthesis

Matzner: Shock breakout, supernovae

Thompson: Neutron star formation

Yalinevich: Shock physics, thermonuclear transients

Gossan: CCSN explosion mechanism

(partial list)



3) UAlberta:

5) UVic:

4) UCalgary:

MM Transient Theory in Canada
(partial list)

Ivanova: Binary evolution, stellar mergers

Fernandez: Mass ejection in transients

Ouyed: Quark EOS and supernova explosions

Herwig: Nucleosynthesis, supernova progenitors



Wind from remnant accretion disk
 • Neutrino cooling shuts down as disk  
   spreads on accretion timescale (~300ms)

 • Viscous heating & nuclear  
   recombination are unbalanced

 • If BH-disk, eject fraction ~10-20%  
   of initial disk mass, more if HMNS-disk

 • Material is neutron-rich (Ye ~ 0.2-0.4), mostly 
light r-process, some light dep. on parameters

RF & Metzger (2013), MNRAS

 • Mass-averaged wind speed (~0.05c) is 
slower than dynamical ejecta (~0.1-0.3c)

Just et al. (2015), MNRAS Lee, Ramirez-Ruiz, & 
Lopez-Camara (2009)

Metzger (2009)

Setiawan et al. (2005)

Perego+(2014)
Fujibayashi+(2017)



GRMHD

RF, Tchekhovskoy, et al. (2019)

Development of MRI 
starts accretion
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Figure 2. Snapshots of the early evolution of the GRMHD model B3d (slice y = 0), with each column corresponding to the time as labeled in the middle
row (the orbital time at the initial density peak is 3.3 ms, or 224rg/c). From top to bottom, rows correspond to electron fraction, neutrino number source
term � (equation 3), temperature, poloidal magnetic pressure, and toroidal magnetic pressure, respectively. The white contours correspond to mass densities
of 106 g cm�3 (outer) and 109 g cm�3 (inner), and some magnetic field lines are shown in gray in the lower two rows. The gray hatched area corresponds to
regions excluded from our analysis for having high magnetization or a density close to the floor value (§2.4).

from Figure 3. This process operates in both GRMHD and hydro-
dynamic models.

The continued decrease in the density eventually causes
weak interactions to drop to dynamically unimportant levels, thus
freezing out Ye. This transformation from a neutrino-cooled disk

(Popham et al. 1999; Chen & Beloborodov 2007) to an advection-
dominated accretion flow (Narayan & Yi 1994) occurs on the an-
gular momentum transport timescale (Beloborodov 2008; Metzger
et al. 2009). This transition can be quantified by the evolution of
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Magnetic field winding 
and amplification 
launch relativistic 
outflow over first few 
orbits

MRI increases heating 
and equilibrium Ye



RF, Quataert, Kashiyama, Coughlin (2018)FAILED SUPERNOVAE that form BLACK HOLES



3D: Transition to Explosion

RF (2015)



Future Directions & Opportunities
CCSNe:

progenitors ➞ collapse models ➞ neutrino signal predictions

EM signal predictions

nucleosynthesis predictions

background models
NS/BH mergers:
binary populations ➞ merger simulations

➞ remnant evolution

➞ nucleosynthesis yields
➞ light curves, spectra, etc.

➞ GW predictions

➞ background for neutrino studies


