

Design, Optimization and Construction of MRTOF mass analyzer at IMP/CAS Yongsheng Wang

- Motivation
- Setup (SHANS)
- Design, optimization of mass analyzer
- Construction of MRTOF mass analyzer at IMP/CAS
- Preliminary test of MRTOF mass analyzer
- Summary

To measure the mass value of fusion-evaporation products, especially for the transuranium nuclei, directly.

Spectrometer for Heavy Atoms and Nuclear Structure

Heavy Ion Research Facility at Lanzhou

16-19 July 2019, McGill University

The reaction products are identified by using energy, spatial and time correlations between the implants and subsequent α decays.

Layout of MRTOF-MS at SHANS

- > SPIG extracts the thermalized ions from gas catcher
- > Ion trap provides high quality pulsed beam for mass analyzer
- > Mass analyzer separates the ions with different m/q
- > BN Gate deflects the unwanted ions
- MCP is a time-of-flight detector

> LPT is a Penning trap system

ERs from

SHANS

Degrade

CGC

16-19 July 2019, McGill University

≻ Why?

The initial conditions of a cluster are complex.

The phase space is large, but the usable parameters are limited.

➤ Goal?

To find out the optimal parameters.

≻ How?

SIMION code for ion trajectory calculation.

Local code developed using C++ with Nelder-Mead simplex

algorithm for parameter search.

A model is created in the SIMION according to the configuration of the MRTOF-MS

Global search: the initial parameters are elements from a potential matrix estimated roughly according to the knowledge of the beam optics

Local refine: inputting a few sets of relatively high resolving power from global search, a large number of local minima can be obtained and the best are chosen to be the optimal parameter sets

Advantages: the best parameter sets can be found; easy to change or expand the configuration

Disadvantage: very time consuming

Initial conditions

	Kinetic	energy		Pos	sition			An	gle	
Ion	K (eV)	δK (eV)	X (mm)	δx (mm)	y (mm)	δy (mm)	a (mrad)	δa (mrad)	β (mrad)	δβ (mrad)
$^{40}Ar^{1+}$	1500	8.5	0	1	0	1	0	1.5	0	1.5
	The 13th I	nternation	al Confere 16	ence on Sto -19 July 20	opping and 019, McGil	Manipulat l Universit	ion of Ions ty	and relate	d topics	

Potential optimization

IMP

The optimal voltages can be found in different conditions (6.5ms as example)

16-19 July 2019, McGill University

The mass resolving power increases with the increasing of revolution numbers

> Beam size affects R_{max} little at optimal parameter sets, but shows more significant influence at other set points

The mass resolving power increases with the increasing of revolution numbers

> Beam size affects R_{max} little at optimal parameter sets, but shows more significant influence at other set points

> Resolving power $R > 10^5$

- ➤ Total length ≈ 1.5 m, total weight ≈ 70 kg, total number of parts ≈ 160
- Electrode material: 304 stainless steel
- Insulation material: Ceramic (low outgassing rate), Poly-Ether-Ether-Ketone/
 PEEK (excellent mechanical properties)
- Wires: Kapton cable (good conductive, voltage-resistant and insulating properties, and low outgassing rate)

Overall assembly diagram

16-19 July 2019, McGill University

Gas ion (${}^{40}Ar^{1+}$, ${}^{22}Ne^{1+}$) or alkali metal ion ...

alkali metal or alkalineearth metal ion ...

- **Function**: provide stable beam for off-line test and reference ion for online operation
- ➢ Hot cathode discharge ion source
 - advantage: large beam intensity, many kinds of ions, no limits on the life of ions
 - disadvantage: poor vacuum, regular maintenance
- Surface ionization source
 - advantage: stable, little impact on vacuum, no need for maintenance
 - disadvantage: limited types of ions, short service life at strong current

Provided by Dr. Wei Wang from IMP

- Integrated and compact electronics
- Strong anti-interference ability
- high signal-to-noise ratio

- Two outputs: Anode channel and HV channel
- ➢ Signal of anode channel: 600 mV
- ▶ Rise time: ≈ 2 ns

Distributed control and data acquisition system

IMP

Sequential control system

NGate-H	BNGate-L	EnergyCavity	DriftTube	_SR_430
Address	Address	Address	Address	Address
PXI1Slot5/ctr0	V PXI1Slot5/ctr1	V PXI1Slot5/ctr2	V PXI1Slot5/ctr3	^I ‰ PXI1Slot5/ctr4 ▼
DelayTime(us)	DelayTime(us)	DelavTime(us)	DelayTime(us)	DelayTime(us)
0	0	6.5	13.5	÷o
PulseWidth_BNG-H(us)	PulseWidth_BNG-L(us)	PulseWidth_EC(us)	PulseWidth_DT(us)	PulseWidth_MS(us)
0.1	0.1	100	21	10
InitialDelay	InitialDelay	Initialdelay	InitialDelay	Initialdelay
0	÷ 0	0	() O	÷ 0
IdleState	IdleState	Idlestate	IdleState	Idlestate
High	Low	Low	High	High
TicksSource	Trigge	er		
	Trig	iger Source	Trigger Edge	
/PXI1Slot5/80MHzTime	base 🔻 🖌 /PX	IISlot5/PFI0	Rising	STOP

- ➢ 80 MHz internal clock source
- Set the delay time and pulse width of the controlled objects as needed

Refresh	Control Pane	hack Vsat	1						Frit P	
		neck rset	MRT	OF S	etup	Panel				.06
Misc	/ BNG_EC F Potentia	√ MRTOF <u></u> Is	Analyzer	Einzel	ens \/ M	CP				
	Set		Measured	On?		Set			Measured	On?
M1_inj	200.00 V	- Out	200.001	V On	M1_eje	200.00 V	 	Out	200.001	V On
M2_inj	150.00 V	- Out	150.001	🔽 On	M2_eje	150.00 V	*	Out	150.001	🗸 On
M3_inj	10.00 V	🔹 Out	10.000	🔽 On	M3_eje	10.00 V	* *	Out	10.006	🗸 On
M4_inj	-100.00 V	🔹 Out	-99.643	🗸 On	M4_eje	-100.00 V	*	Out	-99.613	🗸 On
L_inj	-20.00 V	🔹 Out	-19.757	0n	L_eje	-20.00 V	*	Out	-19.706	🗸 On
Drift Tub	be									
High	120.00 V	Out	119.679	🔽 On						
Low	1.00 V	🗘 Out	0.677	V On						

Configuration	Measurement	Function Generator	
-Date and Time		Trigger	Reset
Output	GetCurrentTime	Slope Falling V	Check
Year	2018 🚔	Level (V) 1.100	Mode
Month	12 🌲	Offset 0 🚔	Bin clock source Interr 🔻
Day	21	Discriminator	Bin width 80 ns 🔻
Hour	10	Slope Falling -	Bins/record (K) 1
Minute	13	Level (V) -0.025	Records/Scan 10000 🕀 Output
Second	53		
		AUX Uutput	Accumulation mode Add
		AUX1 level (V) 2.00 🚔	Busy time: 0.000488 seconds
		AUX2 level (V) 2.00 🚔	Output
			Load Save
			Config Description:
General decaria	tion:		
Seneral descrip	cron.		

	K450 CONTOFT a	liei	
Configuration Measurement	Function Generator	Total Countr 0	
Scan is in progress	<u>Nr Records accumulated:</u> 0	Refresh Auto 60s 🜩	
10000	Counts vs TOF		
8000			
6000			
50 P2			
6000 (2017)			
2000			
0		N	
0 20 40 60 80	0 100 120 140 180 180 200	220 240 280 280 300 320	

Photo of MRTOF mass analyzer

The 13th International Conference on Stopping and Manipulation of Ions and related topics 16-19 July 2019, McGill University

Produce ions

Process of ions in the test

Pulse

Detection

Accelerate

- 1. Ion source produces ion beam with energy of 200 eV.
- 2. The beam is pulsed under the action of the BNG.
- 3. The pulse beam is accelerated to 1500 eV.
- 4. The number of cycles specified by ions constrained and flown in the MRTOF mass analyzer.
- 5. The ions are detected by MCP detector to obtain the arrival time of ions recorded by the acquisition system.

Test mode: Switching-mirror & In-trap-lift

> Test steps: Preliminary & Fine

> Test object: Time sequence & Voltage

16-19 July 2019, McGill University

According to the sequence diagram of ⁴⁰Ar¹⁺, the low level pulse width of drift tube should be adjusted according to the actual situation

relationship between TOF and the number of revolutions.

> When the number of revolutions is 75, mass resolving power $R \approx$

 $\frac{TOF}{2\Delta TOF(FWHM)} \approx 7,000$

Previous

Ion source:

Discharge ion source

⁴⁰Ar

Vacuum is very bad (~10⁻⁵ mbar)

- Ions could not fly beyond 120 laps
- MCP detector died very quickly
- Ion current was high

Now

Surface ion source

133Cs

Vacuum is good (~1.7x10⁻⁷ mbar)

- Ions can not fly beyond 250 laps
- MCP detector works fine
- Ion current is low

HV switches:

BELKE PS

CGC PS

IMP

> $^{133}Cs^{1+}$ can be constrained up to 250 revolutions, and there is a good linear relationship between TOF and the number of revolutions.

> When the number of revolutions is 150, mass resolving power

$$R \approx \frac{TOF}{2\Delta TOF(FWHM)} \approx 18,000.$$

- > An MRTOF-MS at IMP/CAS is under construction.
- A new method for MRTOF-MS design is presented. Geometry, potential parameters can be optimized
- ▷ By simulation, R_{max} for 1.5 keV 40 Ar¹⁺ in a 4-electrodes mirror MRTOF-MS is >10,0000 both in switching-mirror and in-trap-lift modes
- > Preliminary experimental test is completed. For ${}^{133}Cs^{1+}$, the mass resolving power *R* has been achieved to be 18,000.

Collaborators

Wenxue HUANG, Yulin TIAN, Junying WANG, Zaiguo GAN, Xiaohong ZHOU

Acknowledgements

Peter SCHURY, Tommi ERONEN, Michiharu WADA, Yuta ITO, Ryan RINGLE,

Thanks for your attention!