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Neutrinos

* Fundamental particles

Neutral

Weakly Interacting
Small Mass (< 1 eV)

e Common

Open Questions:

* Are neutrinos their own anti-particle?

* What are the neutrino masses?

e Can neutrinos violate lepton # conservation?
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Neutrinoless Double Beta Decay (Ov[3p)

Postulated nuclear decay process
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The discovery of neutrinoless double beta decay will answer:

Open Questions:

* Are neutrinos their own anti-particle? > Yes

e What are the neutrino masses? > (mgp) ~ 10 - 100 meV
e Can neutrinos violate lepton # conservation2———> Yes

Lepton # conservation violation is an important requirement for many theories
that seek to explain the matter-antimatter asymmetry of the universe




The nEXO Experiment:

Next-generation Liquid Xenon (LXe) Time Pro;ectlon Chamber (TPC)
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136xe —>(136Ba++’ + 2e”

Barium Tagging: identify barium daughter at OvBpB decay
site for complete background elimination

——— " [ >
'

Underground
cavern

o A

—— Baseline Concept
--- 2uBs-only Background

10°° r r v r r r r r
2 3 4 5 6 7 8 9 10 iy
NEXO CoIIaborat|on Livetires i) NEXO pCDR, arXiv:1805.11142

Phys. Rev. C 97, 065503 (2018)



Barium Tagging R&D Program for nEXO

Extraction to Gas Phase with lon Trapping
* McGill and Carleton Universities and TRIUMF

Electrically Biased probe with Resonance lonization Spectroscopy
» Stanford University

Electrically Biased probe with Thermal Desorption
* University of lllinois Urbana-Champaign @ ANL

Electrically Biased probe with Electron Microscopy
* Brookhaven National Lab

Cryogenic probe with Fluorescence Spectroscopy in Solid Xenon
* Colorado State University



Barium Tagging in Solid Xenon i

* Locate the decay position with the TPC

* Insert a cryogenic probe and trap the
Ba decay daughter in solid Xe

* Extract the probe and cool further

* Tag the Ba daughter in the solid Xe via
laser induced fluorescence

0 Ba > Not BB decay
1 Ba > BB decay

Requires counting of single Ba in solid Xe

laser

fluorescence

Remove probe to observation
region —

Use single Ba imaging
technique we have developed




Deposition of Ba in Sol

id Xe
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Observation of Ba in Solid Xe
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Spectra of Ba in Solid Xe
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We have identified 4 distinct emission peaks,
corresponding to 4 different matrix sites

Three emission
lines exhibit

0.8

bleaching

Excited in the green-yellow range
542 - 590 nm

0.6} 577 nm

Ba atoms with 619 nm emission

show little bleaching

Counts

Bleaching :
Loss of fluorescence with laser exposure

Limits the number of photons that can be collected

Challenge for single-atom imaging

590 600 610 620 630
Wavelength (nm)
B. Mong et. al, Phys. Rev. A 91, 022505 (2015)

570 580



ldentification of Matrix Sites of Ba in Solid Xe

Absorption Intensity
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ldentification of Matrix Sites of Ba in Solid Xe

Incident Ba Atom
Fegt=5.5A

Ba fluorescence at 619 nm is assigned to
Ba atoms in single vacancy (SV) matrix sites

Ba atoms are too large to fit in an SV site,
preferring the 4 and 5 vacancy sites

Ba implanted as an ion has a much tighter
bond to Xe, thus preferring the SV site

Incident Ba* lon
Fog=3.6 A

Xe ry=4.4A
Mechanism from: D.C. Silverman and M.E. Fajardo J. Chem. Phys. 106, 22 (1997)



ldentification of Matrix Sites of Ba in Solid Xe

Ba fluorescence at 619 nm is assigned to
Ba atoms in single vacancy (SV) matrix sites

Incident Ba Atom
Fegt=5.5A

Ba atoms are too large to fit in an SV site,
preferring the 4 and 5 vacancy sites

Ba implanted as an ion has a much tighter
bond to Xe, thus preferring the SV site

Ba* then neutralizes to Ba, but is trapped in
the cramped SV site by the Xe matrix

Xe ry=4.4A
Mechanism from: D.C. Silverman and M.E. Fajardo J. Chem. Phys. 106, 22 (1997)



Preliminary Simulation

Fluorescence (arb. units)
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Simulation by B. Gervais
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Simulated emission spectrum has
unresolved 3-fold splitting

3-Gaussian fit width agrees
reasonably with experiment

Peak location is significantly
different from experiment

Sensitive to close-range potential
which is more uncertain

Refinement of potential underway



Fixed Laser Images of Ba in Solid Xe
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Scanning Laser Technigue

Each camera exposure is for a position in a grid:
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See peaks as laser moves near individual atoms




Scanning Laser Technigue

Each camera exposure is for a position in a grid:
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Scanning for Single Ba Atoms

Scan Parameters

x step: 4.0 um 12 x 12 grid
y step: 5.7 um 3s per spot

CCD Counts
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Composite Images of Ba Atom in Solid Xe

Peak from
Frame 76
: Making a Composite Image

6000 . . . :
é, ] Each frame is a CCD image of the laser at a grid location
£ . :
> Between frames, the laser is moved to the next location
2 )
- 1
S 30001 Each frame is then integrated around the laser region
o ]
Q |
© Each integral is scaled by the laser exposure in mW#*s
Qo
[¢]
£ The integrals are then plotted according to laser position

C. Chambers et al. Nature 569, 203-207 (2019)



Composite Images of Ba Atom in Solid Xe

Integrated Counts/mWs

P

X Ste

Remember:
Each pixel is the signal
from one laser position

First Scan Repeat Scan

Still there!

Integrated Counts/mWs
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C. Chambers et al. Nature 569, 203-207 (2019)



Looking at one Ba Atom

Viove the Iaser to this ator
: m{{l{m
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C. Chambers et al. Nature 569, 203-207 (2019)



Looking at one Ba Atom

Sudden turn-off is a key feature

Ensembles decay smoothly
Single emitters are on/off

CCD Counts

High Signal Definition

250

Average signal is 11o above background
Summed signal is 700 above background

C. Chambers et al. Nature 569, 203—207 (2019)
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Comparing Backgrounds

Xe-only Before First Scan Xe-only After

Integrated Counts/mWs

)(Step 150

C. Chambers et al. Nature
569, 203-207 (2019)

y stepP

0
12 X St
e

Evaporated at 100K Evaporated at 100K

No Ba left behind after evaporation!




Erasing the Ba Deposit

Evaporated at 100K Evaporated at 100K
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Even after a large deposit (7000 ions) we remove detectable Ba atoms to a limit of < 0.16%
Thus no “history effect” interfering with subsequent deposits




Imaging Single Ba Atoms with 577 nm =
Use 300 nW instead of 30 pW
25s or 17s frames instead of 7s frames

Borrowed an EMCCD camera

Often the Ba peak was already gone in a repeat scan

570 580 590 600 610 620 630
Wavelength (nm)

Xenon Only Barium Barium Rescan

Integrated Counts
Integrated Counts

Integrated Counts

We can image single Ba atoms with faster bleaching




Extracting Ba from Liquid Xe

Barium

Probe

Copper
Holder

Window

Extract SXe sample
via bellows

fluorescence in
upper chamber

Isolation valves allow
for pressure control
around sample

Ablate Ba+ and
draw to cryoprobe



Conclusions

* Single atoms imaged in solid noble element for the first time

* Scanning technique allows for counting of individual atoms

* Can image single Ba in two matrix sites — 619 nm and 577 nm

* The fundamental scientific breakthrough for Ba tagging in nEXO

* Cryoprobe apparatus being developed for extraction of Ba from LXe
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Energy Levels of Ba in Vacuum

Fluorescence Transition
6s? 1S, «— 6s6p P,
@ 553.5 nm

If the electron decays to metastable
state it is no longer excited by the laser
It “Turns off”
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Energy Levels of Ba in Solid Xe

- 6s6p P, If the electron decays to metastable
state it is no longer excited by the laser
It “Turns off”

1
Fluorescence Transition 6s5d °D,

6s? 1S, «— 6s6p P,
@ 545 —-585 nm ——— 6s5d °D, , ;

Broadened in both
excitation and emission

In the solid Xe matrix, the
modified potential may allow
transitions forbidden in vacuum

6s2 1S,



Additional Ba Scanning Experiments with 619nm
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Composite images of Ba* deposits taken over several days show repeatability of single Ba imaging




Achieving a high Ba tagging efficiency:
can we image single Ba* ions in solid xenon?
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Achieving a high Ba tagging efficiency: can we image single Ba* ions in solid xenon?
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