UNIVERSITY OF

TEXAS

ARLINGTON

(7next .

Bartum Ion Transport in High
Pressure Xenon (as using RF
Carpets

Katherine Woodruff
for the NEX'T Collaboration

SMI 2019




NEXT ton-scale

* Xenon-136 double beta decay happens uniformly
in the detector

* 1 ton of xenon at 10 bar is 55 m3

* Need to transport the Ba++ ion to ~cm? region
for SMFI

o TPC drift field will deliver ion to TPC
the cathode

* Use an RF carpet to transport
across the cathode



Barium 1on mobility in xenon

* Barium doesn’t drift as a single ion
e Ba™ + Xe + Xe e« BaXe™ + Xe

* Predict Ba*/Xe cluster formation using density functional theory (DFT)
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Cluster Population in Ba** System
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lon drift experimental studies

* Made an 1on drift chamber with a spark source to study drift properties in
high pressure

Vacuum / pressure valve

* Sparking electrodes are
made of tungsten

Positive ion drift
Signal out /
Amplifier board
1 Source viewports

* lonizes the gas in spark

lon spark source

' v sopily
chamber =l Ty s
* Using DC voltage source % ol 7 LT P e
to produce DC drift fields Wl ¢ s ThEe
up to 425 V/cm '
* Drift region is 13 cm Gas ports Drif region

lon gate grid 2

Needle actuator
lon gate grid 1



lon drift experimental studies

2500
. —— 175V/cm

* Sparked in argon gas at 3 bar (\ 225V/cm
2000+ —— 275V/cm

— 325V/cm

* Expect argon ions at the detection plane —— 375V/cm
1500/ ——— 425V/cm

* We see several populations in the ion
packets reaching the cathode
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RF carpets cathode transport

* Use RF carpets to transport the 1ons across the cathode

* The final design will have several CCD camera scanning regions and RF
carpet systems

* This gives some spatial resolution /ﬂ\
to match the decay daughter to a @

two-electron event in the

tracking plane carpet Drift field
* The number of cameras/carpets ‘ :
will depend on the @
background SMFI
coincidence probability imaging
region \

Cathode plane




Two-neutrino decay coincidences
* Both 2V and OV S decays will produce a daughter barium ion

* We want the probability of a random coincidence between a barium ion from 2vf [
and a misidentified radioactive background event to be less than 30 (p;, ~ 0.0027)

* The coincidence rate is driven by the decay 2V decay rate

Toypp = 2.11x10%" years

e There are 4.02X10%7xenon atoms in 1 ton:

Ryvpp = 1.32Xx10°decays/ton/year

(~2.5 decays/minute in 1 ton of xenon)



Two-neutrino decay coincidences
* The SMFTI timing resolution will be ~1s

* The number of 2V [ decays in a given volume will
be:

Rate X volume X density

R2yppX(8xX8YXL - §t)Xp < P34
= §x X 6y < 4500 cm?

e This 1s a circle with a 43 cm diameter

* Could cover a 2.6 meter cathode with ~15
carpet/camera systems




RE carpet transport requirements

This has been NEXT constraints Stability depends on

demonstrated: = Size ~40 cm diameter ion mobility
MSU thesis (Pang 2011) This 1s.affected Eif 1.:h€ .
Buffer gas Xenon-136 clustering of Ba™" in high
pressure Xenon gas
Demonstrated ____~ Gas pressure 10 bar PRA: 97-062509
u to 30 m r: Bainglass et d/. (2018)
b 0 mba Push field 300 V/cm

NIM B: 376:221-224
(Gehring ez al. 20106)

About 10x higher
than typical fields

* Are all of these requirements achievable?
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1JMS 299:2 71-77

RF carpet effective potential Schwams 2010

Location of effective potential minimum (approximation):

a T m; (ya\?
n = ——1 (E 0% + D2 ‘ )
Ymin = =5 ‘pa( ) Sty /2) (zv)
|

Ymin 1s large when argument is near zero

* NEXT constraints: * Controllable parameters:
* E,: electric push field * a: electrode pitch
* M;: bartum ion mass * ¥: gap to pitch ratio
* q: barium ion charge * (): RF frequency
* D: damping constant * V: RF voltage
p. 42 1pTo

m; Kopo T
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Stable 10n motion

* Jon stability 1s determined by the electric field perpendicular to the
carpet

* The ion motion is stable when the repelling force of the carpet is strong
enough to keep the ion from touching the electrode

* An empirical fit to the approximated electric field gives the stability

requirement: T L:
Epr +1.09\k/Eq <1
q 1 m
* Epr = e E, (reduced push field) I A
3 3 >
e Eq = nzl- 912 ;;2 sin (T[ g) (dimensionless RF field component) §E A
*x =D/Q (reduced damping parameter) SR
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Stable 10n motion

Stability as a function of RF voltage for different electrodes pitches

| stable

unstable

a=0.05mm
— a = 0.25mm
— a=0.1mm

e Ba™" in 10 bar xenon
* 13.56 MHz RF

* Standard temperature

* Limited by Paschen’s law

+—— 4 mil pitch
(standard PCB gauge)
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CARIBU RF carpet tests at ANL

* We have been given priority I ranking for time in the CARIBU beamline
* Working with RF carpet expert at ANL, Guy Savard
* Use barium beam to test RF carpet transport in high pressure
* We will test up to 1 bar of pressure with a 30 V/cm push field

* Fill with helium, then argon, then xenon

* If successtul, we will propose tests at higher pressures and push fields
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RE Carpet

* RF carpet from Notre Dame via ANL
(Guy)
* 252 electrodes with 0.16 mm pitch
e 8 cm active diameter
* 0.32 mm center hole diameter

* Transports ion using surﬁng wave

* Surfing wave can be produced with a
function generator

* Full period every four electrodes
* Couple to the RF signal inside the chamber
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Steerable drift field

* Asymmetric electric field cage

* One side is has a higher voltage than the other at

the cathode end of the field cage

* We can control the relative voltages from outside

* Allows us to change the position of the barium ion
on the RF carpet
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SIMION 1on simulations

* Using SIMION to study different conditions

* RF carpet geometry:

Push

electrode

)

* 252 electrode rings

* 0.16 mm spacing

e 8 cm active diameter

* Push electrode 4 cm from carpet surface

* Simulating Ba™ " ions in He, Ar, and Xe

* Determining possible operating parameters for first
CARIBU tests

* Pressures up to 1 bar
* Push field up to 30 V/cm

* Will continue to higher pressures and push fields

RFE carpet
17



SIMION simulation details

* Using a hard-sphere collision model with modified cross sections

* The cross sections are modified based on the Ba™ mobilities in helium, argon, and

xenon found in .XCat database:
e Bat*in He: Ky = 18 cm?/Vs

McGuirk, e al. . Chem. Phys. 130 (2009) 194305
Buchachenko, ¢f al. ]. Chem. Phys. 148 (2018) 154304

e Ba™ in Ar: KO = 2.06 sz/VS‘/ (via LXCat database)

* Ba*"in Xe: Ky = 0.55 cm? /Vs__ Bainglass, ¢z a/. Phys. Rev. A 97, 062509

* 13.56 MHz RF with 100 kHz (4-phase) surfing wave
* Jon time-step (sampling rate) 0.0092 us (8 steps per RE period)

* Ba"" ions generated 1 cm from surface of carpet

* Inarandom lcm-diameter area, 30 cm from the carpet center:

Example in
helium:

Ba™" in 1 bar He (V=150 V, E_ =30 V/cm)

push
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First simulations 1n argon at 1 bar

* Stable 1on transport 1s more
difficult in argon

* We have been able to find some
stable operating conditions for
argon at 1 bar

* Beginning to map out the
Ba™"/Ar parameter space

Examples in argon:

Ba* in 1 bar Ar (Vgg=250 V, E_4,=10 V/em, V=5 V)

_____________________________________________________________

Ba* in 1 bar Ar (Vgp=250 V, E_ =15 V/em, V=5 V)

o - ————————— - — — -

19



First simulations 1n argon at 1 bar

Transport distance [mm]
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* Varying the push field, RF and surfing wave amplitudes
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(stable ions make it the full 30 mm)

* Very dependent on RF voltage
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RF Paschen curve

* Our simulations and plans assume that we need to stay well below the
Paschen curve

* Paschen curve is based on DC voltage

: i 4 mil 4 mil
* Is this true at RF frequencies? /! bar / 10 bar
10%: : |
z || : .
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Similarity principle
* We are operating at 13.56 MHz with ~0.01 cm (4 mil) spacing

* Similarity principle:
The Electrical Breakdown of Gases in Uniform High Frequency

* RF Paschen curve depends on frequency x gap down of Gases
1elas a OW rressure
By W. G. TOWNSEND+ anp G. C. WILLIAMS}

* Our fd ~ 0.14 MHz-cm
Department of Physics, University College of Swansea

Communicated by F. Llewellyn Jones ; MS. received 18th June 1958, and in final

* Near DC, but not exactly
form 21st Fuly 1958
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RFE high voltage tests 1n high pressure

* Testing the RIF breakdown strength in high pressure gases

Spark gap

* Test setup:
 Two 1/4” thick steel electrodes
* One held at ground, the other at RF HV

* 5 mil Kapton sheets for gauges
* Use 1-3 sheets (5-15 mil)

* Kapton is sandwiched between electrodes

23



UTA gas system

* Gas system at UTA can go up to 10 bar

* Testing with helium, argon, and xenon

 Pressures from 100 mbar to 10 bar
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High voltage RE signal

* 300-watt 13.56-MHz generator + impedance tuner

* Signal goes to both application and potential
divider for monitoring

Voltage to
electrodes

1.2

at 10 mil spacing:

Tested the relationship in air

L J
L J
L ]
L ]
[ ]
° e Testl
® o Test2
[ ]
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5 o L] ----""'-"-'-.--
e

e Testl
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Velectrode
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RF breakdown in helium

* We see different relationships for different spacings

* Breakdown voltage is higher for larger gaps
* It’s possible that the potential divider may behave differently at different spacings

1
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RF breakdown in argon

 Similar difference between spacings

* Overall closer to the DC Paschen curve
* Limited by the breakdown through the Kapton spacers

Breakdown voltage [V, -]

10° 1

' 4 mil at

: 1 bar ___é/

DC Paschen curve
5 mil (trial 1)

5 mil (trial 2)

5 mil (trial 3)

15 mil

100

10!
Pressure x gap [torr cm]

102
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RF breakdown in xenon

* Closer to the DC Paschen curve at smaller spacings

* The data looks very promising for high pressure xenon!

—— DC Paschen curve
+ 5 mil
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Next steps

* Make a test stand that doesn’t require material
between the electrodes

* Understand the behavior of the voltage divider
better

* Is it spacing, pressure, voltage dependant?

* Have PCB made that mimics the RF carpet

* How will the Kapton substrate effect the inter-
electrode breakdown?

Y 7
’.‘ \\
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Summary

* Can potentially use RF carpets to transport barium ions across the NEXT
cathode to an SMFI imaging region

* Operating at 10 bar in xenon will be a major challenge

* Approximate calculations show that it may be possible with high enough voltage
and small enough electrode spacing

* Using SIMION to further explore the possible operating space
* Our first tests at 1 bar will be done 1 a barium beam at CARTHU

* Testing the RF breakdown voltages at small distances

* Will determine exactly how high we can safely push the RF voltage at high
pressure

* Early data looks very promising for high voltage in xenon gas!

Thank youl
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