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NEXT ton-scale
• Xenon-136 double beta decay happens uniformly 

in the detector
• 1 ton of  xenon at 10 bar is 55 m3

• Need to transport the Ba++ ion to ~cm2 region 
for SMFI
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the cathode

• Use an RF carpet to transport 
across the cathode



Barium ion mobility in xenon
• Barium doesn’t drift as a single ion
• Ba+ + Xe + Xe ⟷ BaXe+ + Xe

• Predict Ba+/Xe cluster formation using density functional theory (DFT)
• Excellent agreement with data
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Mobility and Clustering of  Barium Ions and Dications in High Pressure Xenon Gas
E. Bainglass, B.J. P. Jones, et. al. Phys.Rev. A97 (2018) no.6, 062509 



Ba++ mobility in xenon
• Use the same theory to predict Ba++

mobility in Xe
• Bigger clusters more similar to each other, so 

less pressure dependence in Ba++ than Ba+
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• Isotopic composition changes scattering 
kinematics, so %-level differences with 
enriched xenon

Calculated Ba++ clusters:
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Ion drift experimental studies
• Made an ion drift chamber with a spark source to study drift properties in 

high pressure
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• Sparking electrodes are 
made of  tungsten
• Ionizes the gas in spark 

chamber

• Using DC voltage source 
to produce DC drift fields 
up to 425 V/cm
• Drift region is 13 cm



Ion drift experimental studies
• Sparked in argon gas at 3 bar

• Expect argon ions at the detection plane

• We see several populations in the ion 
packets reaching the cathode

• This requires further study
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RF carpets cathode transport
• Use RF carpets to transport the ions across the cathode
• The final design will have several CCD camera scanning regions and RF 

carpet systems
• This gives some spatial resolution

to match the decay daughter to a 
two-electron event in the
tracking plane

• The number of  cameras/carpets
will depend on the
background
coincidence probability
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Two-neutrino decay coincidences
• Both 2𝜈𝛽𝛽 and 0𝜈𝛽𝛽 decays will produce a daughter barium ion
• We want the probability of  a random coincidence between a barium ion from 2𝜈𝛽𝛽

and a misidentified radioactive background event to be less than 3𝜎 (p3𝜎 ~ 0.0027)
• The coincidence rate is driven by the decay 2𝜈𝛽𝛽 decay rate

𝜏%&'' = 2.11×10%.	years

• There are 4.02×10%6xenon atoms in 1 ton:

𝑅%&'' = 1.32×109decays/ton/year 

(~2.5 decays/minute in 1 ton of  xenon)
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Two-neutrino decay coincidences
• The SMFI timing resolution will be ~1s
• The number of  2𝜈𝛽𝛽 decays in a given volume will 

be:
Rate × volume × density

𝑅%&''× 𝛿𝑥×𝛿𝑦×𝐿 > 𝛿𝑡 ×𝜌 < 	𝑝CD	
⟹ 𝛿𝑥	×	𝛿𝑦 ≲ 4500	cm%

• This is a circle with a 43 cm diameter
• Could cover a 2.6 meter cathode with ~15 

carpet/camera systems
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0.5 g/cm



RF carpet transport requirements
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Parameter NEXT constraints

Size ~40 cm diameter

Buffer gas Xenon-136

Gas pressure 10 bar

Push field 300 V/cm

This has been 
demonstrated:
MSU thesis (Pang 2011)

NIM B: 376:221–224 
(Gehring et al. 2016) 

Demonstrated 
up to 300 mbar:

Stability depends on 
ion mobility
This is affected by the 
clustering of  Ba++ in high 
pressure xenon gas
PRA: 97:062509
Bainglass et al. (2018)

About 10x higher 
than typical fields

• Are all of  these requirements achievable?



RF carpet effective potential
Location of  effective potential minimum (approximation):

𝑦HIJ	 = −
𝑎
2𝜋
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𝜋
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• Controllable parameters:
• 𝑎: electrode pitch
• 𝛾:   gap to pitch ratio
• Ω:  RF frequency
• 𝑉:  RF voltage

𝑦HIJ	 is large when argument is near zero

𝐷 =	
𝑞
𝑚]

1
𝐾c

𝑝
𝑝c
𝑇c
𝑇

• NEXT constraints:
• 𝐸e: electric push field
• 𝑚]:  barium ion mass
• 𝑞:    barium ion charge
• 𝐷:    damping constant

IJMS 299:2 71-77 
(Schwarz 2010)



Stable ion motion
• Ion stability is determined by the electric field perpendicular to the 

carpet
• The ion motion is stable when the repelling force of  the carpet is strong 

enough to keep the ion from touching the electrode
• An empirical fit to the approximated electric field gives the stability 

requirement:
𝐸Qf	 + 1.09 𝜅/𝐸i	

� < 1

• 𝐸Qf	 =
k
lm

.
no

p
q
𝐸Q	 (reduced push field)

• 𝐸i	 		=
k
lm

.
no

rs
tqo

sin π t
%

(dimensionless RF field component)

• 𝜅					 = 𝐷/Ω (reduced damping parameter)
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Stable ion motion
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unstable
stable

4 mil pitch
(standard PCB gauge)

Stability as a function of  RF voltage for different electrodes pitches

• Ba++ in 10 bar xenon
• 13.56 MHz RF
• Standard temperature

• Limited by Paschen’s law



CARIBU RF carpet tests at ANL
• We have been given priority I ranking for time in the CARIBU beamline

• Working with RF carpet expert at ANL, Guy Savard
• Use barium beam to test RF carpet transport in high pressure
• We will test up to 1 bar of  pressure with a 30 V/cm push field

• Fill with helium, then argon, then xenon
• If  successful, we will propose tests at higher pressures and push fields
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RF Carpet
• RF carpet from Notre Dame via ANL 

(Guy)
• 252 electrodes with 0.16 mm pitch
• 8 cm active diameter
• 0.32 mm center hole diameter
• Transports ion using surfing wave

• Surfing wave can be produced with a 
function generator

• Full period every four electrodes
• Couple to the RF signal inside the chamber
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Steerable drift field
• Asymmetric electric field cage

• One side is has a higher voltage than the other at 
the cathode end of  the field cage
• We can control the relative voltages from outside
• Allows us to change the position of  the barium ion 

on the RF carpet
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SIMION ion simulations
• Using SIMION to study different conditions
• RF carpet geometry:
• 252 electrode rings

• 0.16 mm spacing
• 8 cm active diameter

• Push electrode 4 cm from carpet surface

• Simulating Ba++ ions in He, Ar, and Xe
• Determining possible operating parameters for first 

CARIBU tests
• Pressures up to 1 bar
• Push field up to 30 V/cm

• Will continue to higher pressures and push fields
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• Using a hard-sphere collision model with modified cross sections
• The cross sections are modified based on the Ba++ mobilities in helium, argon, and 

xenon found in LXCat database:
• Ba++ in He:  𝐾c = 18	cm%/Vs
• Ba++ in Ar:  𝐾c = 2.06	cm%/Vs
• Ba++ in Xe:  𝐾c = 0.55	cm%/Vs

SIMION simulation details

18

McGuirk, et al. J. Chem. Phys. 130 (2009) 194305
Buchachenko, et al. J. Chem. Phys. 148 (2018) 154304

(via LXCat database)

Bainglass, et al. Phys. Rev. A 97, 062509

• 13.56 MHz RF with 100 kHz (4-phase) surfing wave
• Ion time-step (sampling rate) 0.0092 𝜇s (8 steps per RF period)
• Ba++ ions generated 1 cm from surface of  carpet

• In a random 1cm-diameter area, 30 cm from the carpet center:

Ba++ in 1 bar He (VRF=150 V,  Epush=30 V/cm)Example in 
helium:



First simulations in argon at 1 bar
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• Stable ion transport is more 
difficult in argon
• We have been able to find some 

stable operating conditions for 
argon at 1 bar
• Beginning to map out the 

Ba++/Ar parameter space

Examples in argon:
Ba++ in 1 bar Ar (VRF=250 V,  Epush=10 V/cm, Vsurf=5 V)

Ba++ in 1 bar Ar (VRF=250 V,  Epush=15 V/cm, Vsurf=5 V)

Ba++ in 1 bar Ar (VRF=250 V,  Epush=20 V/cm, Vsurf=5 V)

Ba++ in 1 bar Ar (VRF=240 V,  Epush=10 V/cm, Vsurf=10 V)

Ba++ in 1 bar Ar (VRF=240 V,  Epush=15 V/cm, Vsurf=10 V)

Ba++ in 1 bar Ar (VRF=240 V,  Epush=20 V/cm, Vsurf=10 V)



First simulations in argon at 1 bar
• Varying the push field, RF and surfing wave amplitudes
• Only changing the parameters tunable in first CARIBU tests
• Comparing the average transport distance
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• The simulations are on the border of  stability
• (stable ions make it the full 30 mm)

• Very dependent on RF voltage
• We need to confirm the voltage breakdown with 

our RF frequency in laboratory conditions



RF Paschen curve
• Our simulations and plans assume that we need to stay well below the 

Paschen curve
• Paschen curve is based on DC voltage
• Is this true at RF frequencies?
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Similarity principle
• We are operating at 13.56 MHz with ~0.01 cm (4 mil) spacing
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• Similarity principle:
• RF Paschen curve depends on frequency x gap
• Our fd ~ 0.14 MHz-cm
• Near DC, but not exactly



RF high voltage tests in high pressure
• Testing the RF breakdown strength in high pressure gases
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• Test setup:
• Two 1/4” thick steel electrodes

• One held at ground, the other at RF HV
• 5 mil Kapton sheets for gauges

• Use 1-3 sheets (5-15 mil)
• Kapton is sandwiched between electrodes

Spark gap



UTA gas system
• Gas system at UTA can go up to 10 bar
• Testing with helium, argon, and xenon
• Pressures from 100 mbar to 10 bar
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Gas panel

Pressure 
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High voltage RF signal
• 300-watt 13.56-MHz generator + impedance tuner
• Signal goes to both application and potential 

divider for monitoring
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Voltage to 
electrodes

Tested the relationship in air 
at 10 mil spacing:



RF breakdown in helium
• We see different relationships for different spacings
• Breakdown voltage is higher for larger gaps
• It’s possible that the potential divider may behave differently at different spacings
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4 mil at 
1 bar



RF breakdown in argon
• Similar difference between spacings
• Overall closer to the DC Paschen curve
• Limited by the breakdown through the Kapton spacers 
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4 mil at 
1 bar



RF breakdown in xenon
• Closer to the DC Paschen curve at smaller spacings
• The data looks very promising for high pressure xenon!
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4 mil at 
1 bar



Next steps
• Make a test stand that doesn’t require material 

between the electrodes

• Understand the behavior of  the voltage divider 
better
• Is it spacing, pressure, voltage dependant?

• Have PCB made that mimics the RF carpet
• How will the Kapton substrate effect the inter-

electrode breakdown?
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Summary
• Can potentially use RF carpets to transport barium ions across the NEXT 

cathode to an SMFI imaging region
• Operating at 10 bar in xenon will be a major challenge
• Approximate calculations show that it may be possible with high enough voltage 

and small enough electrode spacing
• Using SIMION to further explore the possible operating space

• Our first tests at 1 bar will be done in a barium beam at CARIBU
• Testing the RF breakdown voltages at small distances
• Will determine exactly how high we can safely push the RF voltage at high 

pressure
• Early data looks very promising for high voltage in xenon gas!
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Thank you!


