Development of offline ion source for collinear laser spectroscopy at the SLOWRI facility in RIKEN

Minori TAJIMA RIKEN Nishina Center for Accelerator-Based Science July 16, 2019 (13th SMI)

Overview

- Introduction
 - Laser spectroscopy of RI
 - Plan for collinear laser spectroscopy at the SLOWRI
- Motivation
 - Offline Ion source for the planned spectroscopy
 - Reference ions for MRTOF-MS
- Ion source: Laser ablation in He + ion guide
- Test measurement for different ablation targets
 - m/q spectrum
- •Summary

Introduction: Laser spectroscopy of RI Powerful tool to study ground-state nuclear properties

Introduction: Plan for collinear laser spectroscopy experiment at the SLOWRI

Laser spectroscopy has been performed elaborately at ISOL facilities except for short-lived, and/or refractory elements.

Perio	od								Io	n sourc	:e:								
1	1 H								+ s	Surface Plasma	- cool								2 He
2	3 Li	4 Be		Laser									5 B	6 C	7 N	8 0	9 F	10 Ne	
3	11 Na	12 Mg	ł	http://isoyields-classic.web.cern.ch/query_tgt.htm 13 14 15 16 17 Cl										17 Cl	18 Ar				
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 <u>Mn</u>	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
* La	* Lanthanides			57 La 89	58 Ce 90	59 Pr 91	60 Nd 92	61 Pm 93	62 Sm 94	63 Eu 95	64 Gd 96	65 Tb 97	66 Dy 98	67 Ho 99	68 Er 100	69 Tm 101	70 Yb 102		
** A	** Actinides ** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No																		
	40		41		42			44		73	7	74		75		76		77	

Z	40	41	42	44	73	74	75	76	77	78
	Zr	Nb	Мо	Ru	Та	W	Re	Os	Ir	Pt
T _{melt} [K]	2128	2750	2896	2607	3290	3695	3459	3306	2719	2041

Introduction: Plan for collinear laser spectroscopy experiment at the SLOWRI

Universal slow, low-emittance RI ion beams will be available at BigRIPS (in-flight separator) + SLOWRI facility (gas cell)

Laser spectroscopy at the SLOWRI is planned (for elements being difficult to obtain at ISOL facility).

Motivation: Offline ion source for the planned spectroscopy

Motivation: Reference ions for MRTOF-MS

- Multireflection time-of-flight mass spectrograph (MRTOF-MS) is a powerful tool with a relative precision of 10⁻⁷
- Offline ion source of many elements would be also useful as a reference

Concept of ion source system

Refractory metal --- Surface ionization is difficult → Laser ablation in vacuum --- Large energy spread is not

 \rightarrow Laser ablation in He gas + RF ion guide system

Low-emittance ion source of many elements whichever solid target is available (incl. refractory elements)

Ion source system

Differential pumping

- He pressure is kept constant (feedback to piezo valve)
- Ions are stopped in He, guided down to RF carpet by DC electric field (~8V/cm).

Ion source system (RF carpet)

- Ions are transported by DC (8V/cm) + RF
- Transport efficiency of ~80% was achieved.

0.15mm width, 0.3mm pitch, 0.5mm hole at the center

- 4 thin plates (PCB), each as a segmented electrode.
- Ions are transported by DC (~0.2V/cm) + RF
- Transport efficiency of ~90% was achieved.

- Ions are transported by RF electric field.
- Transport efficiency of ~90% was observed.

Total eff. ~70%

Test measurement for different ablation targets

Ion source was connected to a test beamline |on source

2 m 4-quadrupoles Separator magnet Faraday Cup (FC)

- Laser ablation of several solid targets.
- Resulted ion beams are collected at FC, sweeping the magnetic field.

(Horizontal slits before and after the separator magnet: 0.5mm width)

m/q spectrum for different ablation targets

- Target: Ni, Ag, Zr, Ta, W, BaF₂ in He 4mbar
- Laser: 532nm, ~5ns width, 10Hz, ~10mJ/pulse (Minilite I)
- Singly charged ions of refractory elements (Zr, Ta, W), compound (BaF₂→Ba⁺) with ~10⁷/pulse

Summary

- Offline ion source was developed, mainly for the planned laser spectroscopy experiment at the SLOWRI facility in RIKEN.
- By combining laser ablation of a solid target in He and RF ion guide system, singly charged ions of several elements (incl. refractory) were successfully obtained.

Outlook

 Demonstration of the collinear laser spectroscopy of Ba⁺.