The ELI-IGISOL radioactive ion beam facility at ELI-NP

Paul Constantin ELI-NP (Bucharest)

Competitiveness Operational Programme (COP)

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) - Phase II

Project Co-financed by the European Regional Development Fund

OUTLINE

- > The ELI-NP Gamma Beam System
- > The ELI-IGISOL Radioactive Ion Beam
- > Design of its Gas Stopping Cell

The ELI–NP Gamma Beam System

High Power Laser: maximum 2x10PW at 0.1Hz **world record!** Experiments start next year

Gamma Beam: 0.2-20MeV, $\Delta E/E > 0.3\%$, spectral density $4 \cdot 10^4 \gamma/(s \cdot eV)$, pol. 99% contract cancelled! New contract this year: **3 years delay**

- Laser driven experiments: fission-fusion, nuclear reactions in plasma
- Gamma driven experiments:
 NRF, photofission, (γ,n), charged particles,
 exotic nuclei
- Combined experiments: high field QED

Extreme Light Infrastructure – Nuclear Physics

ELI-NP Gamma Beam Facility

The ELI-NP Gamma Beam

The ELI-IGISOL Radioactive Ion Beam

Radioactive Ion Beams with the Gamma Beam

Beam energy range up to ~19 MeV covers the GDR: RIB via photofission in an actinide thick target

M. Thoennessen, Rep. Prog. Phys. 76 (2013) 056301

- > nuclear EOS $e=e(\rho,\delta)$:
- RIBs opened the relative neutron excess δ >0 region
- stellar r-process nucleosynthesis
- > tests of nuclear structure models:
- special regions: sudden deformation onset A~100, doubly-magic ¹³²Sn

ELI-IGISOL beamline: **Exotic Neutron-Rich Isotopes**

Production of exotic neutron-rich fission fragments Refractory elements: light region Zr-Mo-Rh and heavy rare-earths region around Ce

²³⁸U target:

- thick because $\sigma(\gamma, f) \sim 1b$
- sliced in many thin foils: refractory, fast extraction
- tilted foils:
 - (1) avoid hitting neighboring foils
 - (2) increase γ pathlength w/ increasing thickness

IGISOL beam line:

ELI-NP, IFIN-HH, GSI, Giessen, IPN Orsay, IoP VAST

Phase I

- 1) Cryogenic Stopping Cell (orthogonal extraction)
- 2) RFQ (Radio Frequency Quadrupole)
- 3) MR ToF (Multiple Reflection Time of Flight)

Phase II

- 1) β -decay station: HPGe detectors, tape station
- 2) collinear laser spectroscopy station

T. Dickel et al., NIM B 376 (2016) 216

ELI-IGISOL beamline project

Part of ELI-NP extension to the former nuclear reactor: approved by the Romanian Government

ELI-IGISOL beamline project

- tunnel construction and reactor building upgrade starts in 2020
- experimental setups implementation starts in 2021

Tunnel to reactor building

Design of the Gas Stopping Cell

Fission fragment release rates

GSI Target Laboratory:

6 UO₂ targets 2μm (2.2mg/cm²) 0.5μm graphite backing AlMg₃ frame

Target foils: 4mg/cm^2 (2µm metallic U) with 0.5µm graphite backing Gamma beam rate 10^{12} γ/s \rightarrow Radioative Ion Beam rate $\sim 10^7$ frag/s

P. Constantin et al., NIM B 397 (2017) 1-10

Fragment Slowing Down in Gas

Geant4: He, T=70K, p=300mbar (ρ =0.206mg/cm³) >95% of fragments stop in 11.3cm \rightarrow width~24cm

Space charge = He⁺ cloud created by fragment (>90%) Above a certain **charge density rate Q**: field saturation, strong e-ion recombination, weak plasma.

Space Charge Effects

SIMION 8.1 program:

solves Poisson eq. dynamically (PIC simulation) \rightarrow extraction efficiency ϵ and time τ

$$\epsilon \nabla^2 \Phi(x, y) = -e\tau_i Q(x, y)$$

Fragment extraction – RF carpet transport

Optimal density ρ : large for fragment stopping, small for carpet repulsion Optimal U_{DC}, U_{RF}, v_{RF}, r₀ for best ε and $\tau \rightarrow \varepsilon > 90\%$ and $\tau \approx 10$ ms are obtained A traveling wave carpet will be used in the upper extraction cell.

Fragment extraction – Hypersonic Gas Jets

At nozzles: v_{max} =800m/s, T_{min} =12K $\rightarrow M_{max} \sim v/\sqrt{T}$ =4 At upper wall: v_{max} =30m/s, T_{min} =50K, time~2ms

RF carpets: ion kinematics at upper wall Gas system: mass flow \approx 3 g/min, 2 inlets & 2 outlets

Jyvaskyla: He fluorescence gas jet visualization

Schlieren setup for gas jet visualization

Alternative: converging-diverging lenses Advantages: cryogenic operation; wide v range

Hypersonic Gas Jets – Gas System

Exotic nuclei selection

- ions extracted from the CSC are formed into a RIB by the RFQ: cooling, bunching, mass selection (m/ Δ m~200), CID
- high resolution mass selection and measurement by the MR-ToF

. Ayet San Andres S. et al., Phys Rev C 99, 064313 (2019)

Summary & Outlook

- a two-phased IGISOL RIB facility will be built at ELI-NP
- its main characteristics are expected to be:
 - very low backgrounds (space charge)
 - high efficiency (70-90%) and low extraction time (12-20 ms)
 - very high mass selectivity ($\Delta m/m \sim 10^6$): isomeric beams
 - large range of measuring capabilities: mass, $\alpha/\beta/\gamma$ spectroscopy, nuclear moments and radii
 - emphasis on refractory isotopes
- demonstrator gas cell
- tests of components this year

^{15/15}

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) - Phase I www.eli-np.ro

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

Thank you!

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro