

The CISe project (Chemical Isobaric Separation)

Julia Even

University of Groningen

Outline

- > Motivation why do we want chemistry in a gas-catcher?
- First studies of ion chemistry of Sn, Ag, In and Cd in a collision cell
- A setup dedicated for Chemical Isobaric Separation (CISe)
- > Summary & Outlook

Chemistry in a gas-catcher

Nothing new – but most times not wanted

3

But why not just making the best out of it?

Ion chemistry in a gas-catcher

4

R. Ferrer et al. Phys. Rev. C **81**, 044318 (2010) A.A. Kwiatkowski et al. Phys. Rev. C**80**, 051302(R) (2009).

Are there more cases in which chemistry could be useful?

Hunting doubly-magic ¹⁰⁰Sn

6

masses: AME 2012 rp-path: H. Schatz et al., Phys. Rev. Lett. 86(16), 3471 (2001)

How can we produce tin-100?

7

- ISOL: Not in reach yet
- Fragmentation
- FRS ^[1]: ¹²⁴Xe @ 124 GeV, Be-target (5.8 ± 2.1) pb
- > BigRIPS^[2]: ¹²⁴Xe @ 30.4 GeV, Be-target (0.75 ± 0.05) pb
- Fusion evaporation
- CSS2 cyclotron at GANIL^[3]: ⁵⁸Ni(⁵⁰Cr,α4n)¹⁰⁰Sn; 255 MeV 40 nb

^[1] C. Hinke et al., Nature **486**(7403), 341 (2012)
^[2] I. Čeliković et al., Phys. Rev. Lett. **116**(16), 162501 (2016)
^[3] M. Chartier, et al., Phys. Rev. Lett. **77**, 2400 (1996)

The velocity separator -SHIP

The SHIPTRAP facility

10

Why has this not been done, yet?

Expected rates behind SHIP

Assumption:		n: Beam: $4 \cdot 10^{12.58}$	Beam: 4· 10 ^{12 58} Ni/s,	
		Target: 1 mg/cn	n ^{2 50} Cr	
		Transmission th	Transmission through SHIP: 20	
		Cross section ^[1]	Rate	
		[mbarn]	[ions/s]	
	¹⁰⁰ Sn	0.00004	~0.4	

How can we separate Sn from Ag, In and Cd?

| 13

Witchcraft or Chemistry

Heksenketel voor het wegen van magische kernen krijgt subsidie

30 mei 2017

Haar methoden zijn een gruwel voor natuurkundigen, maar dankzij een chemische achtergrond kan Julia Even mogelijk een doorbraak forceren: het nauwkeurig vaststellen van de massa van exotische, instabiele atoomkernen. Zij heeft hiervoor onlangs een onderzoeksubsidie van 425.000 euro ontvangen van NWO.

Terug naar het nieuwsoverzicht

Science LinX nieuws

CISE Chemical Ion SEparation

Potential chemical systems

CS₂: extract Sn as SnS^{+ 1)}

```
CH_4: separation of Sn<sup>+</sup> and In <sup>+</sup>
from Ag(CH_4) <sup>+</sup> and Cd(CH_4) <sup>+ 2)</sup>
```

 $Ag^+ + CH_4 \rightarrow Ag^+(CH_4)$

 $Ag^{+}(CH_{4}) + CH_{4} \rightarrow Ag^{+}(CH_{4})_{2}$

 $Cd^+ + CH_4 \rightarrow Cd^+(CH_4)$

¹⁾ R. Kirchner, Nucl. Instr. and Meth. in Phys. Res. B
 204 (2003) 179–190
 ²⁾ A. Shavesteb, et al. J. Phys. Chem. A **113** (2009)

²⁾ A. Shayesteh, et al. J. Phys. Chem. A **113** (2009) 5602

16

First studies in a qToF II

17

First studies with methane

- Sn⁺ and In⁺ do not react with methane
- Cd⁺ forms Cd(CH₄)⁺ clusters
- Ag+ forms $Ag(CH_4)^+$ and $Ag(CH_4)_2^+$

But reaction yields were below 5% 🛞

However, there is one thing, you always get for free!

Impurity - Water

Reaction with water

- ¹⁰⁹Ag(H₂O)⁺
- ¹¹³Cd(H₂O)⁺

No reaction with In⁺ Low reaction yields with Sn⁺

Next steps

- Fixing the qToF
- Studies of the ions with charge state 2+
- Alternative reagents: CH₃Cl, OCS, CO
- Disassembling the qToF

A. Mollaebrahimi et al., Nucl. Instr. Meth. Phys. Res.B (2019) in press

26

The gas-catcher

A. Mollaebrahimi et al., Nucl. Instr. Meth. Phys. Res.B (2019) in press

Gas-catcher – one carpet

Gas catcher – two carpets

Gas catcher

Ring electrodes: DC gradient 7 V/cm

RF carpet Printed circuit board. 0.125 mm gap between electrodes

500

250

0

-250

-500

Vr (m/s)

DC gradient: 3 V/cm RF: 100 V_{pp} , 10MHz

30

Setup - overview

Ion-guide structure

Hexapoles:

Stainless steal rods 5mm diameter Distance between two opposite rods: 13.9 mm First hexapole: 125 mm length Second hexapole 600 mm length RF: 120 V_{pp} , 1 MHz

Ion guide

33

Comsol simulation

Mounting in progress

Summary and outlook

- Chemistry is not necessary our enemy
- Gas chemical separation of Sn, In, Cd, and Ag is ongoing
- Setup for on- and offline experiments under construction

Next steps:

- Further chemistry studies in the collision cell (CH₄, H₂O, OCS, CH₃CI, CO)
- Mounting and commissioning of the setup
- Chemistry studies in the catcher with the laser ablation source
- Chemistry studies at AGOR

Thanks to...

B. Anđelić^{1,2}, L.F. Arcila¹, A. Mollaebrahimi¹, M. Adams¹, M. Block^{2,3,4}, F. Giacoppo^{2,3}, N. Kalantar-Nayestanaki¹, O. Kaleja^{3,4,5}, H. R. Kremers¹, M. Laatiaoui^{2,4}, P. Lemmens¹, S. Raeder^{2,3}, H. Smit¹

- ¹ University of Groningen, Groningen, The Netherlands
- ² Helmholtz-Institute Mainz, Mainz, Germany
- ³ GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
- ⁴ Johannes Gutenberg University Mainz, Mainz, Germany
- ⁵ Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Mechanical workshops of the University Groningen at KVI-CART & FSE & UMCG

Funding: NWO projectruimte, European Commission (EU-COFUND-Rosalind Franklin Fellowship)

Thank you for your attention!

faculty of science and engineering

Postdoc and PhD position available for NEXT!

